On Schwartz Spaces and Mackey Convergence

Hans Jarchow

Publications du Département de mathématiques (Lyon) (1973)

  • Volume: 10, Issue: 3, page 79-97
  • ISSN: 0076-1656

How to cite

top

Jarchow, Hans. "On Schwartz Spaces and Mackey Convergence." Publications du Département de mathématiques (Lyon) 10.3 (1973): 79-97. <http://eudml.org/doc/274273>.

@article{Jarchow1973,
author = {Jarchow, Hans},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
number = {3},
pages = {79-97},
publisher = {Université Claude Bernard - Lyon 1},
title = {On Schwartz Spaces and Mackey Convergence},
url = {http://eudml.org/doc/274273},
volume = {10},
year = {1973},
}

TY - JOUR
AU - Jarchow, Hans
TI - On Schwartz Spaces and Mackey Convergence
JO - Publications du Département de mathématiques (Lyon)
PY - 1973
PB - Université Claude Bernard - Lyon 1
VL - 10
IS - 3
SP - 79
EP - 97
LA - eng
UR - http://eudml.org/doc/274273
ER -

References

top
  1. 1. Berezanskii, I.A.: Inductively reflexive, locally convex spaces. Dokl.Akad.Nauk SSSR182, 20-22 (1969). English transl, in Soviet Kath.Dokl.9, 1080-1082 (1969). Zbl0174.17001MR240587
  2. 2. Binz, E., Keller, H.H. : Funktionenräume in der Kategorie der Li-mesräume. Ann.Ac.Sei.Fennicae, AI383 (1966). Zbl0158.19903MR206890
  3. 3. Bourbaki. N.: Espaces vectoriels topologiques,chap. 3-5. Paris: Hermann1967. 
  4. 4. Buchwalter, H. : Topologies et compactologies. Publ. Dépt. Math. Lyon6-2, 1-74 (1969). Zbl0205.41601MR412762
  5. 5. Buchwalter, H. : Espaces localement convexes semi-faibles. In this Lecture Note. Zbl0293.46006
  6. 6. Butzmann. H.P.: Über die c -Reflexivitet von C c ( X ) . Comment. Math. Helv.47, 92-101 (1972). Zbl0237.46026MR308651
  7. 7. Cook. C.H., Fischer, H.R.: On equicontinuity and continuous convergence. Math.Ann.159, 94-104 (1965). Zbl0129.38001MR179752
  8. 8. De Wilde, M. : Réseaux dans les espaces linéaires à semi-normes. Mém.Soc.Roy.Sc.Liège, 5e sér., 18, 2, 1969. Zbl0199.18103
  9. 9. De Wilde, M. : Ultrabornological spaces and the closed graph theorem. Bull.Soc.Roy.Sc.Liège40, 116-118 (1971). Zbl0216.40603MR322468
  10. 10. Diestel, J., Morris, S.A., Saxon, S.A. : Varieties of locally convex topological vector spaces. Bull.AMS, 77, 799-803 (1971). Zbl0219.46002MR282188
  11. 11. Fischer, H.R. : Limesräume. Math.Ann.137, 269-303 (1959). Zbl0086.08803
  12. 12. Floret, K. : Lokalkonvexe Sequenzen mit kompakten Abbiläungen. Journ.Reine Angew.Math.247, 155-195 (1971). Zbl0209.43001MR287271
  13. 13. Hogbe-Nlend, H. : Théorie des bornologies et applications. Lecture Notes213, Springer1971. Zbl0225.46005MR625157
  14. 14. Hogbe-Nlend, H. : Topologies et bornologies nucléaires associées. To appear in Ann.Inst.Fourier. Zbl0251.46008
  15. 15. Horváth, J. : Topological vector spaces and distributions, I. Reading, Mass. : Addison-Wesley1966. Zbl0143.15101
  16. 16. Jarchow, H. : Marinescu-Räume. Comment.Math.Helv.44, 138-164 (1969). Zbl0175.41501MR250019
  17. 17. Jarchow, H. : Dualität und Marinescu-Räume. Math.Ann.182. 134-144 (1969). Zbl0175.41502MR511665
  18. 18. Jarchow, H. : Zur Theorie der quasitonnelierten Räume. Math.Ann.191. 271-278 (1971). Zbl0202.12702MR287273
  19. 19. Jarchow, H. : Duale Charakterisierungen der Schwartz-Räume. Math.Ann.196, 85-90 (1972). Zbl0219.46008MR305008
  20. 20. Jarchow, H. : Barrelledness and Schwartz spaces. Math.Ann.200. 241-252 (1973). Zbl0234.46003MR322464
  21. 21. Jarchow, H. : Die Universalität des Raumes c o für die Klasse der Schwartz-Räume. To appear in Math.Ann. Zbl0242.46032MR320700
  22. 22. Jarchow, H., Swart, J. : On Mackey convergence in locally convex spaces. To appear in Israël J. of Math. Zbl0272.46002MR333646
  23. 23. Keller, H.H. : Räume stetiger multilinearer Abbildungen als Li-mesräume. Math.Ann.159, 259-270 (1965). Zbl0131.11403MR193475
  24. 24. Köthe, G. : Topologische lineare Räume I, 2.Aufl. Berlin-Heidelberg-New York : Springer1966. Zbl0137.31301
  25. 25. Marinescu, G. : Espaces vectoriels pseudotopologiques et théorie des distributions. Berlin: Deutscher Verl.a.Wiss. 1963. Zbl0124.31602MR166605
  26. 26. Raikov, D.A. : Some properties of fully complete linear operators (russ.). Ucen.Zap.Moscov Gos.Ped.Inst.188, 171-191 (1962). 
  27. 27. Randtke, D.J. : Characterization of precompact maps, Schwartz spaces and nuclear spaces. Trans.AMS165, 87-101 (1972). Zbl0209.14405MR305009
  28. 28. Randtke, D.J. : A factorization theorem for compact operators. Proc.AMS34, 201-202 (1972). Zbl0235.47010MR295135
  29. 29. Randtke, D.J. : A structure theorem for Schwartz spaces. Math.Ann.201, 171-176 (1973). Zbl0234.46002MR326347
  30. 30. Randtke, D.J. : A simple example of a universal Schwartz space. Proc.AMS37 , 185-188 (1973). Zbl0251.46005MR312192
  31. 31. Schroder. M. : Continuous convergence in a Gelfand theory for topological algebras. Thesis, Queens University, Kingston (Canada) 1971. Zbl0268.54003
  32. 32. Schwartz, L. : Théorie des distributions à valeurs vectorielles I. Ann. Inst. Fourier7, 1-141 (1957). Zbl0089.09601MR107812
  33. 33. Swart, J. : Zur Théorie der Schwartz-Räume. Dissertation, University of Zürich (1973). Zbl0268.46004
  34. 34. Terzioglu, T. : On Schwartz spaces. Math.Ann.182, 236-242 (1969). Zbl0179.45501MR247417
  35. 35. Terzioglu, T. :A characterization of compact linear mappings. Arch.d.Math.22, 76-78 (1971). Zbl0215.20902MR291865
  36. 36. Wloka, J. : Limesräume und Distributionen. Math.Ann.152, 351-409 (1963). Zbl0173.41902MR158260

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.