2 Calcul de Weyl et déformations

E. Combet; G. Patissier

Publications du Département de mathématiques (Lyon) (1983)

  • Volume: 3/B, Issue: 3B, page 1-22
  • ISSN: 0076-1656

How to cite

top

Combet, E., and Patissier, G.. "2 Calcul de Weyl et déformations." Publications du Département de mathématiques (Lyon) 3/B.3B (1983): 1-22. <http://eudml.org/doc/274280>.

@article{Combet1983,
author = {Combet, E., Patissier, G.},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {Weyl calculus; quantification; symplectic structure; deformation},
language = {fre},
number = {3B},
pages = {1-22},
publisher = {Université Claude Bernard - Lyon 1},
title = {2 Calcul de Weyl et déformations},
url = {http://eudml.org/doc/274280},
volume = {3/B},
year = {1983},
}

TY - JOUR
AU - Combet, E.
AU - Patissier, G.
TI - 2 Calcul de Weyl et déformations
JO - Publications du Département de mathématiques (Lyon)
PY - 1983
PB - Université Claude Bernard - Lyon 1
VL - 3/B
IS - 3B
SP - 1
EP - 22
LA - fre
KW - Weyl calculus; quantification; symplectic structure; deformation
UR - http://eudml.org/doc/274280
ER -

References

top
  1. [1] A. Grossmann, G. Loupias, E.M. Stein, An algebra of pseudodifferential operators and quantum mechanics in phase spacefAnn. Inst. Fourier18, 2 (1968), 343-368. Zbl0176.45102MR267425
  2. [2] A. Voros, An algebra of pseudodifferential operators and the asymptotics of quantum mechanics. Journal of functional Analysis29, 104-132 (1978). Zbl0386.47031MR496088
  3. [3] A. Unterberger, Oscillateur harmonique et opérateurs pseudodifférentiels. Ann. Inst. Fourier, 29, 3 (1979), 201-224. Zbl0396.47027MR552965
  4. [4] L. Hormander, The Weyl calculuc of pseudo-differential operators. Communications on P. and A. Mathematics, Vol. XXXII (1979), 359-443. Zbl0388.47032
  5. [5] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerovicz et D. Sternheimer, Deformation theory and quantization. Ann. of Physics t. 1111978, p. 61-110 et p. 111-152. Zbl0377.53025MR496157
  6. [6] G. Patissier, Déformations différentielles à coefficients constants et produits de Moyal générélisés. Ann. Inst. Henri Poincaré Vol. XXX, 4, 1979, p. 275-293. Zbl0444.35081MR557391
  7. [7] C. Moreno, Produits * et analyse spectrale. Comptes-rendus des journées relativistes, Grenoble1981. 
  8. [8] M. Cohen et S. Gutt, Regular * representations of Lie algebrasLetters in Mathematical Physics, 6 (1982), p. 395-404. Zbl0522.58018MR677443
  9. [9] S. Gutt, Deformation theory and its applications to mechanics and to group representation. Preprint, 1982. Zbl0565.58021MR773484
  10. [10] A. Lichnerovicz, Deformations d’algèbres associées à une varieté symplectique (les * ν -produits), Annales de l'Institut Fourier. tome XXXII, fasc. 1, année 1982. Zbl0465.53025
  11. [11] L. Hormander, pseudo-differential operators and hypoelliptic equations. Amer. Math. Soc.Symp. on Singular integral operators1966. pp. 138-183. Zbl0167.09603MR383152

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.