Sous-algèbres localement convexes de C ( T )

Khalil Noureddine; William Habre

Publications du Département de mathématiques (Lyon) (1977)

  • Volume: 14, Issue: 1, page 27-54
  • ISSN: 0076-1656

How to cite

top

Noureddine, Khalil, and Habre, William. "Sous-algèbres localement convexes de $C(T)$." Publications du Département de mathématiques (Lyon) 14.1 (1977): 27-54. <http://eudml.org/doc/274326>.

@article{Noureddine1977,
author = {Noureddine, Khalil, Habre, William},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {Strict Topology; Completely Regular Space; Nachbin-Shirota Theorem},
language = {fre},
number = {1},
pages = {27-54},
publisher = {Université Claude Bernard - Lyon 1},
title = {Sous-algèbres localement convexes de $C(T)$},
url = {http://eudml.org/doc/274326},
volume = {14},
year = {1977},
}

TY - JOUR
AU - Noureddine, Khalil
AU - Habre, William
TI - Sous-algèbres localement convexes de $C(T)$
JO - Publications du Département de mathématiques (Lyon)
PY - 1977
PB - Université Claude Bernard - Lyon 1
VL - 14
IS - 1
SP - 27
EP - 54
LA - fre
KW - Strict Topology; Completely Regular Space; Nachbin-Shirota Theorem
UR - http://eudml.org/doc/274326
ER -

References

top
  1. [1] A. Badrikian, Séminaire sur les fonctions aléatoires linéaires et mesures cylindriques, Lecture notes in Mathematics, 139 (1970). Zbl0209.48402
  2. [2] H. Buchwalter, Problèmes de completion topologique, D.E.A. Math. pures, Ed. ronéotypée, Lyon1969-1970. 
  3. [3] Buchwalter H., Parties bornées d'un espace topologique complètement régulier, Séminaire Choquet, 9, n° 14, 15 pages (1969-1970). Zbl0213.39604
  4. [4] H. Buchwalter, Sur le théorème de Nachbin-Shirota, J. Math. Pures et appl.51, p. 399-418 (1972). Zbl0247.46005MR322465
  5. [5] H. Buchwalter, Topologies et compactologies, Publ. Dép. Math. Lyon, 6-2, p. 1-74 (1969). Zbl0205.41601MR412762
  6. [6] H. Buchwalter et J. Schmets, Sur quelques propriétés de l'espace CS(T), J. Math. Pures et appl., 52, p.337-552 (1973) Zbl0268.46025MR333687
  7. 54 [7] L. Gillman, et H. Jerison, Rings of continuous functions, Van Nostrand, Princeton N.J. (1960). Zbl0093.30001MR116199
  8. [8] G. Kothe, Topological vector spaces, I, Springer, 1968. Zbl0179.17001MR551623
  9. [9] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acad. U.S.A., 40, p. 471-474 (1954). Zbl0055.09803MR63647
  10. [10] K. Noureddine, Nouvelles classes d'espaces localement convexes, 2° coll. Anal. Fonct. Bordeaux (1973), Pub. Dép. Math. Lyon, 10-3, p. 259-277 (1973). Zbl0292.46002MR367605
  11. [11] K. Noureddine, Topologies strictes sur C ( T ) et C ( T ) Publ. Dép. Math. Lyon, 14-1 (1976). Zbl0394.46022MR493286
  12. [12] K. Noureddine et W. Habre, Topologies p-strictes, Publ. Dep. Math. Lyon, 14-1 (1976). Zbl0405.46019MR493287
  13. [13] H.H. Schaefer, Topological vector spaces, Springer, Zbl0217.16002MR342978
  14. [14] J. Schmets et M. De Wilde, Caractérisation des espaces C(X) ultrabornologiques, Bull. Soc. Roy. Sc. Liège, 40 (1971), p. 119-121. Zbl0216.41001MR291781
  15. [15] J. Schmets et J. Zafarani, Topologie stricte faible et mesures discrètes, Bull. Soc. Roy. Liège, 43, p. 405-418, (1974). Zbl0296.46023MR365105
  16. [16] F.D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc.168, p. 311-336 (1972). Zbl0244.46027MR295065
  17. [17] T. Shirota, On locally convex vector spaces of continuous functions, Proc. Japan Acad.30, p. 294-298 (1954). Zbl0057.33801MR64389
  18. [18] V.S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl.48, p. 161-228 (1965). Zbl0152.04202
  19. [19] Warner S., The topology of compact convergence on continuous functions spaces, Duke Math. J.25, p. 265 -282 (1958). Zbl0081.32802MR102735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.