Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications
Publications du Département de mathématiques (Lyon) (1978)
- Volume: 15, Issue: 4, page 1-36
- ISSN: 0076-1656
Access Full Article
topHow to cite
topBonnard, Bernard. "Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications." Publications du Département de mathématiques (Lyon) 15.4 (1978): 1-36. <http://eudml.org/doc/274330>.
@article{Bonnard1978,
author = {Bonnard, Bernard},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {Hamiltonian vector fields; Lie group; Lie algebra},
language = {fre},
number = {4},
pages = {1-36},
publisher = {Université Claude Bernard - Lyon 1},
title = {Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications},
url = {http://eudml.org/doc/274330},
volume = {15},
year = {1978},
}
TY - JOUR
AU - Bonnard, Bernard
TI - Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications
JO - Publications du Département de mathématiques (Lyon)
PY - 1978
PB - Université Claude Bernard - Lyon 1
VL - 15
IS - 4
SP - 1
EP - 36
LA - fre
KW - Hamiltonian vector fields; Lie group; Lie algebra
UR - http://eudml.org/doc/274330
ER -
References
top- 1 W. Boothby, A transitivity problem from control theory, J. Differential equations17, 296-307. (1975). Zbl0316.93006MR436210
- 2 B. Bonnard, Controlabilité sur le groupe symplectique et couples de champs de vecteurs hamiltoniens contrôlables sur R2n, Thèse 3ème cycle - Metz (1978).
- 3 R.W. Brockett. System theory on group manifolds and coset spacesSiam J. Control (10) 2. 1972. Zbl0238.93001MR315559
- 4 Ciampi, classical hamiltonian linear systems, Queen's papers in pure and applied mathematics, n° 31. Zbl0269.70013
- 5 Gantmacher, Théorie des matrices, Tome 1, Dunod. Zbl0136.00410
- 6 C. Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris1969. Zbl0653.53001MR242081
- 7 Helgason, Differential geometry and symmetric spaces, Academic Press1962. Zbl0111.18101MR145455
- 8 N. Jacobson, Lie algebras, Interscience. Zbl0121.27504
- 9 R. Hirschron, Controllability in nonlinear systems, J. Differential Equations19, 46-61 (1975). Zbl0315.93002MR431271
- 10 R. Hirschron, Global controllability of nonlinear systems, Siam J. Control (1976). Zbl0341.93006MR304004
- 11 V. Jurdjevic, H.J. Sussmann, Controllability of non linear systems, J. Differential Equations12, 95-116 (1972). Zbl0242.49040MR338882
- 12 V. Jurdjevic, H.J. Sussmann, Control systems on Lie groups, J. Differential Equations12, 313-329 (1972). Zbl0237.93027MR331185
- 13 I. Kupka, V. Jurdjevic, Conditions suffisantes d'accessibilité sur les groupes de Lie semi-simples. A paraître.
- 14 F.B. Lee, L. Markus, Foundations of optimal control theory, John Wiley and Sons (1967). Zbl0159.13201MR220537
- 15 C. Lobry, Controlabilité des systèmes non linéaires, Siam J. control (8) 4 (1970). Zbl0207.15201
- 16 C. Lobry, Controllability of non linear systems on compact manifolds, Siam J. Control (12) 4 (1974). Zbl0286.93006
- 17 C. Lobry, Cours 3ème cycle. Bordeaux (1976).
- 18 G. Sallet, Couples de champs de vecteurs de Killing complètement contrôlables sur les sphères et espaces euclidiens, Thèse 3ème cycle, Metz (1976).
- 19 H.J. Sussmann, On the number of vector Fields needed to achieve controllability, Siam J. Control (13) 2 - 1975. Zbl0268.93006MR431267
- 20 H.J. Sussmann, N. Levitt, On controllability by means of two vector Fields, Siam J. Control (13) 6 - 1975. Zbl0313.93006MR402812
- 21 H.J. Sussmann, Some properties of vector Field systems that are not altered by small perturbations, J. Differential Equations, 20, 293-315 (1976). Zbl0346.49036MR394756
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.