Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications

Bernard Bonnard

Publications du Département de mathématiques (Lyon) (1978)

  • Volume: 15, Issue: 4, page 1-36
  • ISSN: 0076-1656

How to cite

top

Bonnard, Bernard. "Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications." Publications du Département de mathématiques (Lyon) 15.4 (1978): 1-36. <http://eudml.org/doc/274330>.

@article{Bonnard1978,
author = {Bonnard, Bernard},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {Hamiltonian vector fields; Lie group; Lie algebra},
language = {fre},
number = {4},
pages = {1-36},
publisher = {Université Claude Bernard - Lyon 1},
title = {Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications},
url = {http://eudml.org/doc/274330},
volume = {15},
year = {1978},
}

TY - JOUR
AU - Bonnard, Bernard
TI - Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications
JO - Publications du Département de mathématiques (Lyon)
PY - 1978
PB - Université Claude Bernard - Lyon 1
VL - 15
IS - 4
SP - 1
EP - 36
LA - fre
KW - Hamiltonian vector fields; Lie group; Lie algebra
UR - http://eudml.org/doc/274330
ER -

References

top
  1. 1 W. Boothby, A transitivity problem from control theory, J. Differential equations17, 296-307. (1975). Zbl0316.93006MR436210
  2. 2 B. Bonnard, Controlabilité sur le groupe symplectique et couples de champs de vecteurs hamiltoniens contrôlables sur R2n, Thèse 3ème cycle - Metz (1978). 
  3. 3 R.W. Brockett. System theory on group manifolds and coset spacesSiam J. Control (10) 2. 1972. Zbl0238.93001MR315559
  4. 4 Ciampi, classical hamiltonian linear systems, Queen's papers in pure and applied mathematics, n° 31. Zbl0269.70013
  5. 5 Gantmacher, Théorie des matrices, Tome 1, Dunod. Zbl0136.00410
  6. 6 C. Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris1969. Zbl0653.53001MR242081
  7. 7 Helgason, Differential geometry and symmetric spaces, Academic Press1962. Zbl0111.18101MR145455
  8. 8 N. Jacobson, Lie algebras, Interscience. Zbl0121.27504
  9. 9 R. Hirschron, Controllability in nonlinear systems, J. Differential Equations19, 46-61 (1975). Zbl0315.93002MR431271
  10. 10 R. Hirschron, Global controllability of nonlinear systems, Siam J. Control (1976). Zbl0341.93006MR304004
  11. 11 V. Jurdjevic, H.J. Sussmann, Controllability of non linear systems, J. Differential Equations12, 95-116 (1972). Zbl0242.49040MR338882
  12. 12 V. Jurdjevic, H.J. Sussmann, Control systems on Lie groups, J. Differential Equations12, 313-329 (1972). Zbl0237.93027MR331185
  13. 13 I. Kupka, V. Jurdjevic, Conditions suffisantes d'accessibilité sur les groupes de Lie semi-simples. A paraître. 
  14. 14 F.B. Lee, L. Markus, Foundations of optimal control theory, John Wiley and Sons (1967). Zbl0159.13201MR220537
  15. 15 C. Lobry, Controlabilité des systèmes non linéaires, Siam J. control (8) 4 (1970). Zbl0207.15201
  16. 16 C. Lobry, Controllability of non linear systems on compact manifolds, Siam J. Control (12) 4 (1974). Zbl0286.93006
  17. 17 C. Lobry, Cours 3ème cycle. Bordeaux (1976). 
  18. 18 G. Sallet, Couples de champs de vecteurs de Killing complètement contrôlables sur les sphères et espaces euclidiens, Thèse 3ème cycle, Metz (1976). 
  19. 19 H.J. Sussmann, On the number of vector Fields needed to achieve controllability, Siam J. Control (13) 2 - 1975. Zbl0268.93006MR431267
  20. 20 H.J. Sussmann, N. Levitt, On controllability by means of two vector Fields, Siam J. Control (13) 6 - 1975. Zbl0313.93006MR402812
  21. 21 H.J. Sussmann, Some properties of vector Field systems that are not altered by small perturbations, J. Differential Equations, 20, 293-315 (1976). Zbl0346.49036MR394756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.