Invariant subspaces for operators in a general II1-factor
Publications Mathématiques de l'IHÉS (2009)
- Volume: 109, page 19-111
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topHaagerup, Uffe, and Schultz, Hanne. "Invariant subspaces for operators in a general II1-factor." Publications Mathématiques de l'IHÉS 109 (2009): 19-111. <http://eudml.org/doc/274348>.
@article{Haagerup2009,
abstract = {Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ
T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace $\{\mathcal \{K\}\}=\{\mathcal \{K\}\}_\{\mathrm \{T\}\}(B)$ affiliated with ℳ, such that the Brown measure of $\mathrm \{T\}|_\{\{\mathcal \{K\}\}\}$ is concentrated on B and the Brown measure of $\mathrm \{P\}_\{\{\mathcal \{K\}\}^\{\bot \}\}\mathrm \{T\}|_\{\{\mathcal \{K\}\}^\{\bot \}\}$ is concentrated on ℂ∖B. Moreover, $\{\mathcal \{K\}\}$ is T-hyperinvariant and the trace of $\mathrm \{P\}_\{\mathcal \{K\}\}$ is equal to μ
T(B). In particular, if T∈ℳ has a Brown measure which is not concentrated on a singleton, then there exists a non-trivial, closed, T-hyperinvariant subspace. Furthermore, it is shown that for every T∈ℳ the limit $A:=\lim _\{n\rightarrow \infty \}[(\mathrm \{T\}^\{n\})^\{*\}\mathrm \{T\}^\{n\}]^\{\frac\{1\}\{2n\}\}$ exists in the strong operator topology, and the projection onto $\{\mathcal \{K\}\}_\{\mathrm \{T\}\}(\overline\{B(0,r)\})$ is equal to 1[0,r](A), for every rgt;0.},
author = {Haagerup, Uffe, Schultz, Hanne},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {von Neumann factors; Brown measures; invariant subspace; T-hyperinvariant subspace},
language = {eng},
pages = {19-111},
publisher = {Springer-Verlag},
title = {Invariant subspaces for operators in a general II1-factor},
url = {http://eudml.org/doc/274348},
volume = {109},
year = {2009},
}
TY - JOUR
AU - Haagerup, Uffe
AU - Schultz, Hanne
TI - Invariant subspaces for operators in a general II1-factor
JO - Publications Mathématiques de l'IHÉS
PY - 2009
PB - Springer-Verlag
VL - 109
SP - 19
EP - 111
AB - Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ
T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace ${\mathcal {K}}={\mathcal {K}}_{\mathrm {T}}(B)$ affiliated with ℳ, such that the Brown measure of $\mathrm {T}|_{{\mathcal {K}}}$ is concentrated on B and the Brown measure of $\mathrm {P}_{{\mathcal {K}}^{\bot }}\mathrm {T}|_{{\mathcal {K}}^{\bot }}$ is concentrated on ℂ∖B. Moreover, ${\mathcal {K}}$ is T-hyperinvariant and the trace of $\mathrm {P}_{\mathcal {K}}$ is equal to μ
T(B). In particular, if T∈ℳ has a Brown measure which is not concentrated on a singleton, then there exists a non-trivial, closed, T-hyperinvariant subspace. Furthermore, it is shown that for every T∈ℳ the limit $A:=\lim _{n\rightarrow \infty }[(\mathrm {T}^{n})^{*}\mathrm {T}^{n}]^{\frac{1}{2n}}$ exists in the strong operator topology, and the projection onto ${\mathcal {K}}_{\mathrm {T}}(\overline{B(0,r)})$ is equal to 1[0,r](A), for every rgt;0.
LA - eng
KW - von Neumann factors; Brown measures; invariant subspace; T-hyperinvariant subspace
UR - http://eudml.org/doc/274348
ER -
References
top- BL. P. Biane, F. Lehner, Computation of some examples of Brown’s spectral measure in free probability, Colloq. Math.90 (2001), p. 181-211 Zbl0988.22004MR1876844
- Br. L. G. Brown, Lidskii’s theorem in the type II case, in: Geometric Methods in Operator Algebras (Kyoto 1983), Pitman Res. Notes Math. Ser. 123 (1986), Longman Sci. Tech., Harlow Zbl0646.46058MR866489
- Co. A. Connes, Classification of injective factors, Ann. Math.104 (1976), p. 73-115 Zbl0343.46042MR454659
- D. K. Dykema, Hyperinvariant subspaces for some B-circular operators, Math. Ann.333 (2005), p. 485-523 Zbl1083.47010MR2198797
- DH1. K. Dykema, U. Haagerup, Invariant subspaces of Voiculescu’s circular operator, Geom. Funct. Anal.11 (2001), p. 693-741 Zbl1023.47005MR1866799
- DH2. K. Dykema, U. Haagerup, DT-operators and decomposability of Voiculescu’s circular operator, Am. J. Math.126 (2004), p. 121-189 Zbl1054.47026MR2033566
- DH3. K. Dykema, U. Haagerup, Invariant subspaces of the quasinilpotent DT-operator, J. Funct. Anal.209 (2004), p. 332-366 Zbl1087.47006MR2044226
- FK. T. Fack, H. Kosaki, Generalized s-numbers of τ-measurable operators, Pac. J. Math.123 (1986), p. 269-300 Zbl0617.46063MR840845
- FuKa. B. Fuglede, R. V. Kadison, Determinant theory in finite factors, Ann. Math.55 (1952), p. 520-530 Zbl0046.33604MR52696
- Fo. G. B. Folland, Real Analysis, Modern Techniques and their Applications, (1984), Wiley, New York Zbl0924.28001MR767633
- H. U. Haagerup, Spectral decomposition of all operators in a II1-factor which is embeddable in R ω , Unpublished lecture notes, MSRI, 2001.
- H2. U. Haagerup, Random matrices, free probability and the invariant subspace problem relative to a von Neumann algebra, in Proceedings of the International Congress of Mathematics, vol. 1, pp. 273–290, 2002. Zbl1047.46043MR1989189
- HL. U. Haagerup, F. Larsen, Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras, J. Funct. Anal.176 (2000), p. 331-367 Zbl0984.46042MR1784419
- HS. U. Haagerup, H. Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra, Math. Scand.100 (2007), p. 209-263 Zbl1168.46039MR2339369
- HT. U. Haagerup, S. Thorbjørnsen, A new application of random matrices: Ext(C red * (F 2)) is not a group, Ann. Math.162 (2005), p. 711-775 Zbl1103.46032MR2183281
- HW. U. Haagerup, C. Winsløw, The Effros-Maréchal topology in the space of von Neumann algebras, II, J. Funct. Anal.171 (2000), p. 401-431 Zbl0982.46045MR1745629
- KR. R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I, (1983), Academic Press, New York Zbl0518.46046MR719020
- KR2. R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II, (1986), Academic Press, Orlando Zbl0601.46054MR859186
- Ka. N. J. Kalton, Analytic functions in non-locally convex spaces and applications, Stud. Math.83 (1986), p. 275-303 Zbl0634.46038MR850829
- La. S. Lang, Real and Functional Analysis, Graduate Texts in Mathematics 142 (1993), Springer, New York Zbl0831.46001MR1216137
- LN. K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, (2000), Clarendon, New York Zbl0957.47004MR1747914
- Ru. W. Rudin, Real and Complex Analysis, (1987), McGraw-Hill, New York Zbl0925.00005MR924157
- Sh. D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math.500 (1998), p. 191-212 Zbl0926.46046MR1637501
- SS. P. Sniady, R. Speicher, Continuous families of invariant subspaces for R-diagonal operators, Invent. Math.146 (2001), p. 329-363 Zbl1032.46077MR1865398
- TuWa. R. Turpin, L. Waelbroeck, Intégration et fonctions holomorphes dans les espaces localement pseudo-convexes, C.R. Acad. Sci. Paris Sér. A-B267 (1968), p. 160-162 Zbl0159.42603MR234281
- V1. D. Voiculescu, Circular and semicircular systems and free product factors, in: Operator Algebras, Unitary Representations, Algebras, and Invariant Theory (Paris, 1989), Progr. Math. 92 (1990), Birkhäuser, Boston Zbl0744.46055MR1103585
- VDN. D. Voiculescu, K. Dykema, A. Nica, Free Random Variables, CRM Monograph Series 1 (1992), American Mathematical Society, Providence Zbl0795.46049MR1217253
- Wa. L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Mathematics 230 (1971), Springer, Berlin Zbl0225.46001MR467234
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.