An axiomatization of the lattice of higher relative commutants of a subfactor.
Let be an inclusion of factors with finite Jones index. Then as a vector space. Here denotes the vector space spanned by the commutators of the form where .
Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace affiliated with ℳ, such that the Brown measure of is concentrated on B...
This is a presentation of recent work on quantum permutation groups. Contains: a short introduction to operator algebras and Hopf algebras; quantum permutation groups, and their basic properties; diagrams, integration formulae, asymptotic laws, matrix models; the hyperoctahedral quantum group, free wreath products, quantum automorphism groups of finite graphs, graphs having no quantum symmetry; complex Hadamard matrices, cocycle twists of the symmetric group, quantum groups acting on 4 points; remarks...
Associated to an Hadamard matrix is the spectral measure μ ∈ [0,N] of the corresponding Hopf image algebra, A = C(G) with . We study a certain family of discrete measures , coming from the idempotent state theory of G, which converge in Cesàro limit to μ. Our main result is a duality formula of type , where are the truncations of the spectral measures μ,ν associated to . We also prove, using these truncations , that for any deformed Fourier matrix we have μ = ν.
On appelle pré-sous-groupe d’un unitaire multiplicatif agissant sur un espace hilbertien de dimension finie une droite vectorielle de telle que . Nous montrons que les pré-sous-groupes sont en nombre fini, donnons un équivalent du théorème de Lagrange et généralisons à ce cadre la construction du “bi-produit croisé”. De plus, nous établissons des bijections entre pré-sous-groupes et sous-algèbres coïdéales de l’algèbre de Hopf associée à , et donc, d’après Izumi, Longo, Popa, avec les...