Nonparametric estimation of the derivatives of the stationary density for stationary processes
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 33-69
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topSchmisser, Emeline. "Nonparametric estimation of the derivatives of the stationary density for stationary processes." ESAIM: Probability and Statistics 17 (2013): 33-69. <http://eudml.org/doc/274349>.
@article{Schmisser2013,
abstract = {In this article, our aim is to estimate the successive derivatives of the stationary density f of a strictly stationary and β-mixing process (Xt)t≥0. This process is observed at discrete times t = 0,Δ,...,nΔ. The sampling interval Δ can be fixed or small. We use a penalized least-square approach to compute adaptive estimators. If the derivative f(j)belongs to the Besov space $\{B\}_\{2,\infty \}^\{\alpha \}$ B 2 , ∞ α , then our estimator converges at rate (nΔ)−α/(2α+2j+1). Then we consider a diffusion with known diffusion coefficient. We use the particular form of the stationary density to compute an adaptive estimator of its first derivative f′. When the sampling interval Δ tends to 0, and when the diffusion coefficient is known, the convergence rate of our estimator is (nΔ)−α/(2α+1). When the diffusion coefficient is known, we also construct a quotient estimator of the drift for low-frequency data.},
author = {Schmisser, Emeline},
journal = {ESAIM: Probability and Statistics},
keywords = {derivatives of the stationary density; diffusion processes; mixing processes; nonparametric estimation; stationary processes},
language = {eng},
pages = {33-69},
publisher = {EDP-Sciences},
title = {Nonparametric estimation of the derivatives of the stationary density for stationary processes},
url = {http://eudml.org/doc/274349},
volume = {17},
year = {2013},
}
TY - JOUR
AU - Schmisser, Emeline
TI - Nonparametric estimation of the derivatives of the stationary density for stationary processes
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 33
EP - 69
AB - In this article, our aim is to estimate the successive derivatives of the stationary density f of a strictly stationary and β-mixing process (Xt)t≥0. This process is observed at discrete times t = 0,Δ,...,nΔ. The sampling interval Δ can be fixed or small. We use a penalized least-square approach to compute adaptive estimators. If the derivative f(j)belongs to the Besov space ${B}_{2,\infty }^{\alpha }$ B 2 , ∞ α , then our estimator converges at rate (nΔ)−α/(2α+2j+1). Then we consider a diffusion with known diffusion coefficient. We use the particular form of the stationary density to compute an adaptive estimator of its first derivative f′. When the sampling interval Δ tends to 0, and when the diffusion coefficient is known, the convergence rate of our estimator is (nΔ)−α/(2α+1). When the diffusion coefficient is known, we also construct a quotient estimator of the drift for low-frequency data.
LA - eng
KW - derivatives of the stationary density; diffusion processes; mixing processes; nonparametric estimation; stationary processes
UR - http://eudml.org/doc/274349
ER -
References
top- [1] S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res.10 (2009) 245–279.
- [2] A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Relat. Fields113 (1999) 301–413. Zbl0946.62036MR1679028
- [3] A. Beskos, O. Papaspiliopoulos and G.O. Roberts, Retrospective exact simulation of diffusion sample paths with applications. Bernoulli12 (2006) 1077–1098. Zbl1129.60073MR2274855
- [4] D. Bosq, Parametric rates of nonparametric estimators and predictors for continuous time processes. Ann. Stat.25 (1997) 982–1000. Zbl0885.62041MR1447737
- [5] F. Comte and F. Merlevède, Adaptive estimation of the stationary density of discrete and continuous time mixing processes. ESAIM : PS 6 (2002) 211–238 (electronic). New directions in time series analysis. Luminy (2001). MR1943148
- [6] F. Comte and F. Merlevède, Super optimal rates for nonparametric density estimation via projection estimators. Stoc. Proc. Appl.115 (2005) 797–826. Zbl1065.62057MR2132599
- [7] F. Comte, Y. Rozenholc and M.L. Taupin, Penalized contrast estimator for adaptive density deconvolution. Can. J. Stat.34 (2006) 431–452. Zbl1104.62033MR2328553
- [8] F. Comte, V. Genon-Catalot and Y. Rozenholc, Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli13 (2007) 514–543. Zbl1127.62067MR2331262
- [9] A.S. Dalalyan and Y.A. Kutoyants, Asymptotically efficient estimation of the derivative of the invariant density. Stat. Inference Stoch. Process.6 (2003) 89–107. Zbl1012.62089MR1965186
- [10] R.A. DeVore and G.G. Lorentz, Constructive approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 303 (1993). Zbl0797.41016MR1261635
- [11] A. Gloter, Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM : PS 4 (2000) 205–227. Zbl1043.62070MR1808927
- [12] E. Gobet, M. Hoffmann and M. Reiß, Nonparametric estimation of scalar diffusions based on low frequency data. Ann. Stat.32 (2004) 2223–2253. Zbl1056.62091MR2102509
- [13] N. Hosseinioun, H. Doosti and H.A. Niroumand, Wavelet-based estimators of the integrated squared density derivatives for mixing sequences. Pakistan J. Stat.25 (2009) 341–350. MR2548649
- [14] C. Lacour, Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées. Ph.D. thesis, Université Paris Descartes (2007).
- [15] C. Lacour, Nonparametric estimation of the stationary density and the transition density of a Markov chain. Stoc. Proc. Appl.118 (2008) 232–260. Zbl1129.62028MR2376901
- [16] F. Leblanc, Density estimation for a class of continuous time processes. Math. Methods Stat.6 (1997) 171–199. Zbl0880.62043MR1466626
- [17] M. Lerasle, Adaptive density estimation of stationary β-mixing and τ-mixing processes. Math. Methods Stat.18 (2009) 59–83. Zbl1282.62093MR2508949
- [18] M. Lerasle, Optimal model selection for stationary data under various mixing conditions (2010). Zbl1227.62018
- [19] E. Masry, Probability density estimation from dependent observations using wavelets orthonormal bases. Stat. Probab. Lett. 21 (1994) 181–194. Available on : http://dx.doi.org/10.1016/0167-7152(94)90114-7. Zbl0814.62021MR1310095
- [20] Y. Meyer, Ondelettes et opérateurs I. Actualités Mathématiques [Current Mathematical Topics]. Hermann, Paris, Ondelettes [Wavelets] (1990). Zbl0694.41037
- [21] E. Pardoux and A.Y. Veretennikov, On the Poisson equation and diffusion approximation I. Ann. Probab.29 (2001) 1061–1085. Zbl1029.60053MR1872736
- [22] B.L.S.P. Rao, Nonparametric estimation of the derivatives of a density by the method of wavelets. Bull. Inform. Cybernet.28 (1996) 91–100. Zbl0864.62023MR1399182
- [23] E. Schmisser, Non-parametric drift estimation for diffusions from noisy data. Stat. Decis.28 (2011) 119–150. Zbl1215.62087MR2810618
- [24] G. Viennet, Inequalities for absolutely regular sequences : application to density estimation. Probab. Theory Relat. Fields (1997). Zbl0933.62029MR1440142
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.