Adaptive estimation of the stationary density of discrete and continuous time mixing processes
Fabienne Comte; Florence Merlevède
ESAIM: Probability and Statistics (2002)
- Volume: 6, page 211-238
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Banon, Nonparametric identification for diffusion processes. SIAM J. Control Optim. 16 (1978) 380-395. Zbl0404.93045MR492159
- [2] G. Banon and H.T. N’Guyen, Recursive estimation in diffusion model. SIAM J. Control Optim. 19 (1981) 676-685. Zbl0474.93060
- [3] A.R. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. Zbl0946.62036MR1679028
- [4] H.C.P Berbee, Random walks with stationary increments and renewal theory. Cent. Math. Tracts, Amsterdam (1979). Zbl0443.60083MR547109
- [5] L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, edited by D. Pollard, E. Torgersen and G. Yang. Springer-Verlag, New-York (1997) 55-87. Zbl0920.62042MR1462939
- [6] L. Birgé and P. Massart, Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. Zbl0954.62033MR1653272
- [7] L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. Zbl1004.41006MR1848840
- [8] L. Birgé and Y. Rozenholc, How many bins must be put in a regular histogram? Preprint LPMA 721, http://www.proba.jussieu.fr/mathdoc/preprints/index.html (2002). Zbl1136.62329
- [9] D. Bosq, Parametric rates of nonparametric estimators and predictors for continuous time processes. Ann. Stat. 25 (1997) 982-1000. Zbl0885.62041MR1447737
- [10] D. Bosq, Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, Second Edition. Springer Verlag, New-York, Lecture Notes in Statist. 110 (1998). Zbl0902.62099MR1640691
- [11] D. Bosq and Yu. Davydov, Local time and density estimation in continuous time. Math. Methods Statist. 8 (1999) 22-45. Zbl1007.62025MR1692723
- [12] W. Bryc, On the approximation theorem of Berkes and Philipp. Demonstratio Math. 15 (1982) 807-815. Zbl0532.60025MR693542
- [13] C. Butucea, Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM: P&S 5 (2001) 1-31. Zbl0990.62032MR1845320
- [14] J.V. Castellana and M.R. Leadbetter, On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986) 179-193. Zbl0588.62156MR833950
- [15] S. Clémençon, Adaptive estimation of the transition density of a regular Markov chain. Math. Methods Statist. 9 (2000) 323-357. Zbl1008.62076MR1827473
- [16] A. Cohen, I. Daubechies and P. Vial, Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. Zbl0795.42018MR1256527
- [17] F. Comte and F. Merlevède, Density estimation for a class of continuous time or discretely observed processes. Preprint MAP5 2002-2, http://www.math.infor.univ-paris5.fr/map5/ (2002).
- [18] F. Comte and Y. Rozenholc, Adaptive estimation of mean and volatility functions in (auto-)regressive models. Stochastic Process. Appl. 97 (2002) 111-145. Zbl1064.62046MR1870963
- [19] I. Daubechies, Ten lectures on wavelets. SIAM: Philadelphia (1992). Zbl0776.42018MR1162107
- [20] B. Delyon, Limit theorem for mixing processes, Technical Report IRISA. Rennes (1990) 546.
- [21] R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag (1993). Zbl0797.41016MR1261635
- [22] D.L. Donoho and I.M. Johnstone, Minimax estimation with wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. Zbl0935.62041MR1635414
- [23] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Statist. 24 (1996) 508-539. Zbl0860.62032MR1394974
- [24] P. Doukhan, Mixing properties and examples. Springer-Verlag, Lecture Notes in Statist. (1995). Zbl0801.60027MR1312160
- [25] Y. Efromovich, Nonparametric estimation of a density of unknown smoothness. Theory Probab. Appl. 30 (1985) 557-661. Zbl0593.62034
- [26] Y. Efromovich and M.S. Pinsker, Learning algorithm for nonparametric filtering. Automat. Remote Control 11 (1984) 1434-1440. Zbl0637.93069
- [27] G. Kerkyacharian, D. Picard and K. Tribouley, adaptive density estimation. Bernoulli 2 (1996) 229-247. Zbl0858.62031MR1416864
- [28] A.N. Kolmogorov and Y.A. Rozanov, On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl. 5 (1960) 204-207. Zbl0106.12005
- [29] Y.A. Kutoyants, Efficient density estimation for ergodic diffusion processes. Stat. Inference Stoch. Process. 1 (1998) 131-155. Zbl0953.62085
- [30] F. Leblanc, Density estimation for a class of continuous time processes. Math. Methods Statist. 6 (1997) 171-199. Zbl0880.62043MR1466626
- [31] H.T. N’Guyen, Density estimation in a continuous-time stationary Markov process. Ann. Statist. 7 (1979) 341-348. Zbl0408.62071
- [32] E. Rio, The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 (1995) 1188-1203. Zbl0833.60024MR1349167
- [33] M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA 42 (1956) 43-47. Zbl0070.13804MR74711
- [34] M. Talagrand, New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505-563. Zbl0893.60001MR1419006
- [35] K. Tribouley and G. Viennet, adaptive density estimation in a -mixing framework. Ann. Inst. H. Poincaré 34 (1998) 179-208. Zbl0941.62041MR1614587
- [36] A.Yu. Veretennikov, On hypoellipticity conditions and estimates of the mixing rate for stochastic differential equations. Soviet Math. Dokl. 40 (1990) 94-97. Zbl0723.60072MR1020375
- [37] G. Viennet, Inequalities for absolutely regular sequences: Application to density estimation. Probab. Theory Related Fields 107 (1997) 467-492. Zbl0933.62029MR1440142