Geometry of Kähler metrics and foliations by holomorphic discs

X. X. Chen; G. Tian

Publications Mathématiques de l'IHÉS (2008)

  • Volume: 107, page 1-107
  • ISSN: 0073-8301

How to cite

top

Chen, X. X., and Tian, G.. "Geometry of Kähler metrics and foliations by holomorphic discs." Publications Mathématiques de l'IHÉS 107 (2008): 1-107. <http://eudml.org/doc/274359>.

@article{Chen2008,
author = {Chen, X. X., Tian, G.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {extremal Kähler metrics; homogeneous complex Monge-Ampere equation; foliations; holomorphic discs},
language = {eng},
pages = {1-107},
publisher = {Institut des hautes études scientifiques},
title = {Geometry of Kähler metrics and foliations by holomorphic discs},
url = {http://eudml.org/doc/274359},
volume = {107},
year = {2008},
}

TY - JOUR
AU - Chen, X. X.
AU - Tian, G.
TI - Geometry of Kähler metrics and foliations by holomorphic discs
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 1
EP - 107
LA - eng
KW - extremal Kähler metrics; homogeneous complex Monge-Ampere equation; foliations; holomorphic discs
UR - http://eudml.org/doc/274359
ER -

References

top
  1. [1] Bando, S., Mabuchi, T. (1987) Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebr. Geom., Sendai, 1985, Adv. Stud. Pure Math. 10: pp. 11-40 Zbl0641.53065MR946233
  2. [2] Bedford, E.D., Taylor, T.A. (1976) The Dirichlet problem for the complex Monge-Ampere operator. Invent. Math. 37: pp. 1-44 Zbl0315.31007MR445006
  3. [3] Calabi, E. (1957) An extension of e. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25: pp. 45-56 Zbl0079.11801MR92069
  4. [4] Calabi, E. (1982) Extremal Kähler metrics. Seminar on Differential Geometry. Princeton University Press, Princeton, pp. 259-290 Zbl0487.53057MR645743
  5. [5] Calabi, E. (1985) Extremal Kähler metrics. II. Differential Geometry and Complex Analysis. Springer, Berlin, pp. 95-114 Zbl0574.58006MR780039
  6. [6] Calabi, E., Chen, X.X. (2002) The space of Kähler metrics. II. J. Differ. Geom. 61: pp. 173-193 Zbl1067.58010MR1969662
  7. [7] Chen, X.X. (1998) Extremal Hermitian metrics in Riemann surface. Int. Math. Res. Not. 15: pp. 781-797 Zbl0955.30032MR1639555
  8. [8] Chen, X.X. (2000) On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 2000: pp. 607-623 Zbl0980.58007MR1772078
  9. [9] Chen, X.X. (2000) Space of Kähler metrics. J. Differ. Geom. 56: pp. 189-234 Zbl1041.58003MR1863016
  10. [10] Cohen, R.L., Lupercio, E., Segal, G.B. (2000) Holomorphic spheres in loop groups and Bott periodicity. Surveys in Differential Geometry. Int. Press, Somerville, MA, pp. 83-106 Zbl1064.58010MR1919423
  11. [11] Donaldson, S.K. (1999) Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar. Amer. Math. Soc. Transl. 196: pp. 13-33 Zbl0972.53025MR1736211
  12. [12] Donaldson, S.K. (2001) Holomorphic discs and the complex Monge-Ampère equation. J. Sympletic Geom. 1: pp. 171-196 Zbl1035.53102MR1959581
  13. [13] Donaldson, S.K. (2005) Scalar curvature and projective embeddings, II. Q. J. Math. 56: pp. 345-356 Zbl1159.32012MR2161248
  14. [14] Fostneric, F. (1987) Analytic discs with boundaries in a maximal real submanifolds of 2 . Ann. Inst. Fourier 37: pp. 1-44 Zbl0583.32038MR894560
  15. [15] Futaki, A. (1992) Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126: pp. 89-101 Zbl0772.53044MR1171594
  16. [16] Globenik, J. (1994) Perturbation by analytic discs along maximal real submanifolds of n . Math. Z. 217: pp. 287-316 Zbl0806.58044MR1296398
  17. [17] Nirenberg, L., Caffarelli, L., Spruck, J. (1984) The Dirichlet problem for nonlinear second-order elliptic equation I, Monge-Ampere equation. Comm. Pure Appl. Math. 37: pp. 369-402 Zbl0598.35047MR739925
  18. [18] Kohn, J.T., Nirenberg, L., Caffarelli, L., Spruck, J. (1985) The Dirichlet problem for nonlinear second-order elliptic equation II. Complex Monge-Ampere equation. Comm. Pure Appl. Math. 38: pp. 209-252 Zbl0598.35048MR780073
  19. [19] Lempert, L. (1983) Solving the degenerate Monge-Ampere equation with one concentrated singularity. Math. Ann. 263: pp. 515-532 Zbl0531.35020MR707246
  20. [20] Mabuchi, T. (1987) Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24: pp. 227-252 Zbl0645.53038MR909015
  21. [21] Oh, Y.G. (1995) Riemann-Hilbert problem and application to the perturbation theory of analytic discs. Kyungpook Math. J. 35: pp. 38-75 Zbl0853.32017MR1345070
  22. [22] Oh, Y.G. (1996) Fredhom theory of holomorphic discs under the perturbation theory of boundary conditions. Math. Z. 222: pp. 505-520 Zbl0863.53024MR1400206
  23. [23] Osserman, R. (1957) On the inequality Δ u f ( u ) . Pac. J. Math. 7: pp. 1641-1647 Zbl0083.09402MR98239
  24. [24] S. Paul and G. Tian, Algebraic and analytic K-stability, preprint, math/0404223. 
  25. [25] Semmes, S. (1992) Complex Monge-Ampère equations and sympletic manifolds. Amer. J. Math. 114: pp. 495-550 Zbl0790.32017MR1165352
  26. [26] Tian, G. (1990) On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101: pp. 101-172 Zbl0716.32019MR1055713
  27. [27] Tian, G. (1997) Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130: pp. 1-39 Zbl0892.53027MR1471884
  28. [28] Tian, G. (2000) Canonical Metrics in Kähler Geometry (Notes taken by Meike Akveld). Birkhäuser, Basel Zbl0978.53002MR1787650
  29. [29] Tian, G. (2000) Bott-Chern forms and geometric stability. Discrete Contin. Dyn. Syst. 6: pp. 211-220 Zbl1022.32009MR1739924
  30. [30] Tian, G., Zhu, X.H. (2002) A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment. Math. Helv. 77: pp. 297-325 Zbl1036.53053MR1915043
  31. [31] Vekuba, N.P. (1967) Systems of Singular Integral Equations. Groningen, Nordhoff 
  32. [32] Yau, S.T. (1978) On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I*. Comm. Pure Appl. Math. 31: pp. 339-441 Zbl0369.53059MR480350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.