Geometry of Kähler metrics and foliations by holomorphic discs
Publications Mathématiques de l'IHÉS (2008)
- Volume: 107, page 1-107
- ISSN: 0073-8301
Access Full Article
topHow to cite
topChen, X. X., and Tian, G.. "Geometry of Kähler metrics and foliations by holomorphic discs." Publications Mathématiques de l'IHÉS 107 (2008): 1-107. <http://eudml.org/doc/274359>.
@article{Chen2008,
author = {Chen, X. X., Tian, G.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {extremal Kähler metrics; homogeneous complex Monge-Ampere equation; foliations; holomorphic discs},
language = {eng},
pages = {1-107},
publisher = {Institut des hautes études scientifiques},
title = {Geometry of Kähler metrics and foliations by holomorphic discs},
url = {http://eudml.org/doc/274359},
volume = {107},
year = {2008},
}
TY - JOUR
AU - Chen, X. X.
AU - Tian, G.
TI - Geometry of Kähler metrics and foliations by holomorphic discs
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 1
EP - 107
LA - eng
KW - extremal Kähler metrics; homogeneous complex Monge-Ampere equation; foliations; holomorphic discs
UR - http://eudml.org/doc/274359
ER -
References
top- [1] Bando, S., Mabuchi, T. (1987) Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebr. Geom., Sendai, 1985, Adv. Stud. Pure Math. 10: pp. 11-40 Zbl0641.53065MR946233
- [2] Bedford, E.D., Taylor, T.A. (1976) The Dirichlet problem for the complex Monge-Ampere operator. Invent. Math. 37: pp. 1-44 Zbl0315.31007MR445006
- [3] Calabi, E. (1957) An extension of e. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25: pp. 45-56 Zbl0079.11801MR92069
- [4] Calabi, E. (1982) Extremal Kähler metrics. Seminar on Differential Geometry. Princeton University Press, Princeton, pp. 259-290 Zbl0487.53057MR645743
- [5] Calabi, E. (1985) Extremal Kähler metrics. II. Differential Geometry and Complex Analysis. Springer, Berlin, pp. 95-114 Zbl0574.58006MR780039
- [6] Calabi, E., Chen, X.X. (2002) The space of Kähler metrics. II. J. Differ. Geom. 61: pp. 173-193 Zbl1067.58010MR1969662
- [7] Chen, X.X. (1998) Extremal Hermitian metrics in Riemann surface. Int. Math. Res. Not. 15: pp. 781-797 Zbl0955.30032MR1639555
- [8] Chen, X.X. (2000) On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 2000: pp. 607-623 Zbl0980.58007MR1772078
- [9] Chen, X.X. (2000) Space of Kähler metrics. J. Differ. Geom. 56: pp. 189-234 Zbl1041.58003MR1863016
- [10] Cohen, R.L., Lupercio, E., Segal, G.B. (2000) Holomorphic spheres in loop groups and Bott periodicity. Surveys in Differential Geometry. Int. Press, Somerville, MA, pp. 83-106 Zbl1064.58010MR1919423
- [11] Donaldson, S.K. (1999) Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar. Amer. Math. Soc. Transl. 196: pp. 13-33 Zbl0972.53025MR1736211
- [12] Donaldson, S.K. (2001) Holomorphic discs and the complex Monge-Ampère equation. J. Sympletic Geom. 1: pp. 171-196 Zbl1035.53102MR1959581
- [13] Donaldson, S.K. (2005) Scalar curvature and projective embeddings, II. Q. J. Math. 56: pp. 345-356 Zbl1159.32012MR2161248
- [14] Fostneric, F. (1987) Analytic discs with boundaries in a maximal real submanifolds of . Ann. Inst. Fourier 37: pp. 1-44 Zbl0583.32038MR894560
- [15] Futaki, A. (1992) Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126: pp. 89-101 Zbl0772.53044MR1171594
- [16] Globenik, J. (1994) Perturbation by analytic discs along maximal real submanifolds of . Math. Z. 217: pp. 287-316 Zbl0806.58044MR1296398
- [17] Nirenberg, L., Caffarelli, L., Spruck, J. (1984) The Dirichlet problem for nonlinear second-order elliptic equation I, Monge-Ampere equation. Comm. Pure Appl. Math. 37: pp. 369-402 Zbl0598.35047MR739925
- [18] Kohn, J.T., Nirenberg, L., Caffarelli, L., Spruck, J. (1985) The Dirichlet problem for nonlinear second-order elliptic equation II. Complex Monge-Ampere equation. Comm. Pure Appl. Math. 38: pp. 209-252 Zbl0598.35048MR780073
- [19] Lempert, L. (1983) Solving the degenerate Monge-Ampere equation with one concentrated singularity. Math. Ann. 263: pp. 515-532 Zbl0531.35020MR707246
- [20] Mabuchi, T. (1987) Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24: pp. 227-252 Zbl0645.53038MR909015
- [21] Oh, Y.G. (1995) Riemann-Hilbert problem and application to the perturbation theory of analytic discs. Kyungpook Math. J. 35: pp. 38-75 Zbl0853.32017MR1345070
- [22] Oh, Y.G. (1996) Fredhom theory of holomorphic discs under the perturbation theory of boundary conditions. Math. Z. 222: pp. 505-520 Zbl0863.53024MR1400206
- [23] Osserman, R. (1957) On the inequality . Pac. J. Math. 7: pp. 1641-1647 Zbl0083.09402MR98239
- [24] S. Paul and G. Tian, Algebraic and analytic K-stability, preprint, math/0404223.
- [25] Semmes, S. (1992) Complex Monge-Ampère equations and sympletic manifolds. Amer. J. Math. 114: pp. 495-550 Zbl0790.32017MR1165352
- [26] Tian, G. (1990) On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101: pp. 101-172 Zbl0716.32019MR1055713
- [27] Tian, G. (1997) Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130: pp. 1-39 Zbl0892.53027MR1471884
- [28] Tian, G. (2000) Canonical Metrics in Kähler Geometry (Notes taken by Meike Akveld). Birkhäuser, Basel Zbl0978.53002MR1787650
- [29] Tian, G. (2000) Bott-Chern forms and geometric stability. Discrete Contin. Dyn. Syst. 6: pp. 211-220 Zbl1022.32009MR1739924
- [30] Tian, G., Zhu, X.H. (2002) A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment. Math. Helv. 77: pp. 297-325 Zbl1036.53053MR1915043
- [31] Vekuba, N.P. (1967) Systems of Singular Integral Equations. Groningen, Nordhoff
- [32] Yau, S.T. (1978) On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I*. Comm. Pure Appl. Math. 31: pp. 339-441 Zbl0369.53059MR480350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.