Lacunary Fractional brownian Motion
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 352-374
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Ayache and J. Lévy-Véhel, Generalized Multifractional Brownian Motion : definition and preliminary results, in Fractals Theory and applications in engineering, edited by M. Dekking, J. Lévy-Véhel, E. Lutton and C. Tricot. Springer (1999) 17–32. Zbl0964.60046MR1726365
- [2] J.M. Bardet and P. Bertrand, Definition, properties and wavelets analysis of Multiscale Fractional Brownian Motion. Fractals15 (2007) 73–87. Zbl1142.60329MR2281946
- [3] J.M. Bardet, G. Lang, G. Oppenheim, A. Phillipe, S. Stoev and M.S. Taqqu, Generators of long-range dependent processes : A survey, in Theory and Applications of Long Range Dependance, edited by P. Doukhan M. Oppenheim and G. Taqqu. Birkäuser (2003) 579–623. Zbl1031.65010MR1957509
- [4] M. Basseville and I. Nikiforov, Detection of abrupt changes–Theory and applications. Prentice-Hall (1993). MR1210954
- [5] A. Benassi and S. Deguy, Multi-scale Fractional Motion : definition and identification, Preprint LAIC (1999).
- [6] A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Revista Matematica Iberoamericana13 (1997) 19–90. Zbl0880.60053MR1462329
- [7] J. Beran, Statistics for Long-Memory processes. Chapman and Hall, London, UK (1994). Zbl0869.60045MR1304490
- [8] Z. Ciesielski, G. Kerkyacharian and B. Roynette, Quelques espaces fonctionnels associés à des processus Gaussiens. Stud. Math. 107 (1993). Zbl0809.60004MR1244574
- [9] M. Clausel, More about uniform irregularity : the wavelet point of view. Preprint (2008).
- [10] J.J. Collins and C.J. De Luca, Open loop and closed loop control of posture : a random walk analysis of center of pressure trajectories, Exp. Brain Res.9 (1993) 308–318.
- [11] H. Csörgö and L. Horvath, Non parametric method for change point problems in Handbook of statistics, edited by P.R. Krishnaiah and C.R. Rao. Elsevier, New York 7 (1988) 403–425.
- [12] R.B. Davies and D.S. Harte, Tests for Hurst effect. Biometrika74 (1987) 95–101. Zbl0612.62123MR885922
- [13] C.R. Dietrich and G.N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput.18 (1997) 1088–1107. Zbl0890.65149MR1453559
- [14] K. Falconer, Fractal Geometry. John Wiley and Sons (1990). Zbl0689.28003MR1102677
- [15] K. Falconer, Tangent Fields and the local structure of random fields. J. Theor. Prob.15 (2002) 731–750. Zbl1013.60028MR1922445
- [16] K. Falconer, The local structure of random processes. J. London Math. Soc.67 (2003) 657–672. Zbl1054.28003MR1967698
- [17] U. Frisch, Turbulence, the legacy of A.N. Kolmogorov. Cambridge University Press (1995). Zbl0832.76001MR1428905
- [18] J.P. Kahane, Geza Freud and lacunary Fourier series. J. Approx. Theory 46 (1986) 51–57. Zbl0621.42013MR835726
- [19] I. Karatzas and S.E. Shreve, Brownian Motion and stochastic calculus. Springer-Verlag (1988). Zbl0734.60060MR917065
- [20] A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. Acad. Sci. URSS26 (1940) 115–118. Zbl66.0552.03MR3441JFM66.0552.03
- [21] J. Lévy-Vehel and R.F. Peltier, Multifractional Brownian Motion : definition and preliminary results, Rapport de recherche de l’INRIA n° 2645 (1995).
- [22] S. Mallat, A wavelet tour of signal processing. Academic Press (1998). Zbl0998.94510MR1614527
- [23] Y. Meyer, Ondelettes et opérateurs. Hermann (1990). Zbl0694.41037MR1085487
- [24] Y. Meyer, F. Sellan and M.S. Taqqu, Wavelets, generalized white noise and fractional integration : the synthesis of Fractional Brownian Motion. J. Fourier Anal. Appl.5 (1999) 465–494. Zbl0948.60026MR1755100
- [25] B.M. Mandelbrot and J. Van Ness, Fractional Brownian Motion, fractional noises and applications. SIAM Rev.10 (1968) 422–437. Zbl0179.47801MR242239
- [26] W. Willinger, M.S. Taqqu and V. Teverosky, Stock market price and long-range dependence. Finance and Stochastics1 (1999) 1–14. Zbl0924.90029
- [27] A.T.A. Wood and G. Chan, Simulation of stationary Gaussian processes in [ 0;1 ] d. J. Comput. Graph. Stat.3 (1994) 409–432. MR1323050