Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 293-306
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topGrinberg, Nastasiya F.. "Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation." ESAIM: Probability and Statistics 17 (2013): 293-306. <http://eudml.org/doc/274387>.
@article{Grinberg2013,
abstract = {In this note we prove that the local martingale part of a convex function f of a d-dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral ∫H(X)dM, where H(x) is some particular measurable choice of subgradient $$ ∇ f ( x ) off at x, and M is the martingale part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result for $\widetilde\{X\}=X+\epsilon B$ x10ff65; X = X + ϵB ,ϵ > 0, where B is a standard Brownian motion, and then pass to the limit as ϵ → 0, using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420–427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.},
author = {Grinberg, Nastasiya F.},
journal = {ESAIM: Probability and Statistics},
keywords = {Itô’s lemma; continuous semimartingales; convex functions; semimartingales; Itō’s lemma; Brownian perturbation},
language = {eng},
pages = {293-306},
publisher = {EDP-Sciences},
title = {Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation},
url = {http://eudml.org/doc/274387},
volume = {17},
year = {2013},
}
TY - JOUR
AU - Grinberg, Nastasiya F.
TI - Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 293
EP - 306
AB - In this note we prove that the local martingale part of a convex function f of a d-dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral ∫H(X)dM, where H(x) is some particular measurable choice of subgradient $$ ∇ f ( x ) off at x, and M is the martingale part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result for $\widetilde{X}=X+\epsilon B$ x10ff65; X = X + ϵB ,ϵ > 0, where B is a standard Brownian motion, and then pass to the limit as ϵ → 0, using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420–427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.
LA - eng
KW - Itô’s lemma; continuous semimartingales; convex functions; semimartingales; Itō’s lemma; Brownian perturbation
UR - http://eudml.org/doc/274387
ER -
References
top- [1] M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193. Zbl0703.60041MR1071540
- [2] N. Bouleau, Semi-martingales à valeurs Rd et fonctions convexes. C. R. Acad. Sci. Paris Sér. I Math.292 (1981) 87–90. Zbl0458.60072MR610155
- [3] N. Bouleau, Formules de changement de variables. Ann. Inst. Henri Poincaré Probab. Statist.20 (1984) 133–145. Zbl0538.60057MR749620
- [4] E. Carlen and P. Protter, On semimartingale decompositions of convex functions of semimartingales. Illinois J. Math.36 (1992) 420–427. Zbl0741.60035MR1161975
- [5] M. Cranston, W.S. Kendall and P. March, The radial part of Brownian motion. II. Its life and times on the cut locus. Probab. Theory Relat. Fields 96 (1993) 353–368. Zbl0791.58109MR1231929
- [6] H. Föllmer and P. Protter, On Itô’s formula for multidimensional Brownian motion. Probab. Theory Relat. Fields116 (2000) 1–20. Zbl0955.60077MR1736587
- [7] H. Föllmer, P. Protter and A.N. Shiryayev, Quadratic covariation and an extension of Itô’s formula. Bernoulli1 (1995) 149–169. Zbl0851.60048MR1354459
- [8] M. Fuhrman and G. Tessitore, Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim.51 (2005) 279–332. Zbl1101.60046MR2148927
- [9] J.R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes Math., vol. 58. Pitman (Advanced Publishing Program), Boston, Mass (1982). Zbl0486.46001MR650456
- [10] W.S. Kendall, The radial part of Brownian motion on a manifold: a semimartingale property. Ann. Probab.15 (1987) 1491–1500. Zbl0647.60086MR905343
- [11] P.-A. Meyer, Un cours sur les intégrales stochastiques. In Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Lecture Notes Math., vol. 511. Springer, Berlin (1976) 245–400. Zbl0374.60070MR501332
- [12] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3th edition. Springer-Verlag, Berlin (1999). Zbl0917.60006MR1725357
- [13] R.T. Rockafellar, Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). Zbl0932.90001MR274683
- [14] F. Russo and P. Vallois, The generalized covariation process and Itô formula. Stochastic Process. Appl.59 (1995) 81–104. Zbl0840.60052MR1350257
- [15] F. Russo and P. Vallois, Itô formula for C1-functions of semimartingales. Probab. Theory Relat. Fields104 (1996) 27–41. Zbl0838.60045MR1367665
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.