Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 293-306
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193. Zbl0703.60041MR1071540
- [2] N. Bouleau, Semi-martingales à valeurs Rd et fonctions convexes. C. R. Acad. Sci. Paris Sér. I Math.292 (1981) 87–90. Zbl0458.60072MR610155
- [3] N. Bouleau, Formules de changement de variables. Ann. Inst. Henri Poincaré Probab. Statist.20 (1984) 133–145. Zbl0538.60057MR749620
- [4] E. Carlen and P. Protter, On semimartingale decompositions of convex functions of semimartingales. Illinois J. Math.36 (1992) 420–427. Zbl0741.60035MR1161975
- [5] M. Cranston, W.S. Kendall and P. March, The radial part of Brownian motion. II. Its life and times on the cut locus. Probab. Theory Relat. Fields 96 (1993) 353–368. Zbl0791.58109MR1231929
- [6] H. Föllmer and P. Protter, On Itô’s formula for multidimensional Brownian motion. Probab. Theory Relat. Fields116 (2000) 1–20. Zbl0955.60077MR1736587
- [7] H. Föllmer, P. Protter and A.N. Shiryayev, Quadratic covariation and an extension of Itô’s formula. Bernoulli1 (1995) 149–169. Zbl0851.60048MR1354459
- [8] M. Fuhrman and G. Tessitore, Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim.51 (2005) 279–332. Zbl1101.60046MR2148927
- [9] J.R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes Math., vol. 58. Pitman (Advanced Publishing Program), Boston, Mass (1982). Zbl0486.46001MR650456
- [10] W.S. Kendall, The radial part of Brownian motion on a manifold: a semimartingale property. Ann. Probab.15 (1987) 1491–1500. Zbl0647.60086MR905343
- [11] P.-A. Meyer, Un cours sur les intégrales stochastiques. In Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Lecture Notes Math., vol. 511. Springer, Berlin (1976) 245–400. Zbl0374.60070MR501332
- [12] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3th edition. Springer-Verlag, Berlin (1999). Zbl0917.60006MR1725357
- [13] R.T. Rockafellar, Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). Zbl0932.90001MR274683
- [14] F. Russo and P. Vallois, The generalized covariation process and Itô formula. Stochastic Process. Appl.59 (1995) 81–104. Zbl0840.60052MR1350257
- [15] F. Russo and P. Vallois, Itô formula for C1-functions of semimartingales. Probab. Theory Relat. Fields104 (1996) 27–41. Zbl0838.60045MR1367665