Sojourn time in ℤ+ for the Bernoulli random walk on ℤ
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 324-351
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Billingsley, Convergence of probability measures. John Wiley & Sons (1968). Zbl0944.60003MR233396
- [2] A.-N. Borodin and P. Salminen, Handbook of Brownian motion – facts and formulae, Probability and its Applications. Birkhäuser Verlag (1996). Zbl1012.60003MR1477407
- [3] V. Cammarota, A. Lachal and E. Orsingher, Some Darling-Siegert relationships connected with random flights. Stat. Probab. Lett.79 (2009) 243–254. Zbl1181.33005MR2483547
- [4] K.-L. Chung and W. Feller, On fluctuations in coin-tossings. Proc. Natl. Acad. Sci. USA35 (1949) 605–608. Zbl0037.36310MR33459
- [5] W. Feller, An introduction to probability theory and its applications I, 3rd edition. John Wiley & Sons (1968). Zbl0039.13201MR228020
- [6] P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University Press, Cambridge (2009). Zbl1165.05001MR2483235
- [7] A. Lachal, arXiv:1003.5009[math.PR] (2010).
- [8] A. Rényi, Calcul des probabilités. Dunod (1966). Zbl0141.14702
- [9] E. Sparre Andersen, On the number of positive sums of random variables. Skand. Aktuarietidskrift (1949) 27–36. Zbl0041.45006MR32115
- [10] E. Sparre Andersen, On the fluctuations of sums of random variables I-II. Math. Scand. 1 (1953) 263–285; 2 (1954) 195–223. Zbl0058.12102MR58893
- [11] F. Spitzer, Principles of random walk, 2nd edition. Graduate Texts in Mathematics 34 (1976). Zbl0359.60003MR388547