Théorème ergodique multiplicatif. Produits de matrices aléatoires indépendantes

Albert Raugi

Publications mathématiques et informatique de Rennes (1996-1997)

  • Issue: 2, page 1-43

How to cite

top

Raugi, Albert. "Théorème ergodique multiplicatif. Produits de matrices aléatoires indépendantes." Publications mathématiques et informatique de Rennes (1996-1997): 1-43. <http://eudml.org/doc/274401>.

@article{Raugi1996-1997,
author = {Raugi, Albert},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {2},
pages = {1-43},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Théorème ergodique multiplicatif. Produits de matrices aléatoires indépendantes},
url = {http://eudml.org/doc/274401},
year = {1996-1997},
}

TY - JOUR
AU - Raugi, Albert
TI - Théorème ergodique multiplicatif. Produits de matrices aléatoires indépendantes
JO - Publications mathématiques et informatique de Rennes
PY - 1996-1997
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 2
SP - 1
EP - 43
LA - fre
UR - http://eudml.org/doc/274401
ER -

References

top
  1. [1] G. Atkinson : Recurrence of co-cycles and random walks, J. London Math. Soc.,13, 3, 1976, 486-488. Zbl0342.60049MR419727
  2. [2] P. Bougerol and J. Lacroix, Products of random matrices with applications to Schrôdinger Operators, Progress in probability and Statistics, 8, Birkhaüser, 1985. Zbl0572.60001MR886674
  3. [3] B. M. Brown, Martingale Central Limit Theorems, Ann. Math. Statis., 42, 1971, 59-66. Zbl0218.60048MR290428
  4. [4] Y. Derriennic : sur le trhéorème ergodique sous-additif, C. R. A. S.Paris281 A, 1975, 985-988. Zbl0327.60028MR396903
  5. [5] H. Furstenberg : Non-commuting random products. Trans. Amer. Math. Soc, 108, 1963, pp. 377-428. Zbl0203.19102MR163345
  6. [6] I.Y. Goldsheid and G. A. Margulis, Simplicity of the Liapunoff spectrum for products of random matrices, Soviet Math., 35, (2, 1987, 309-313. Zbl0638.15010
  7. [7] I.Y. Goldsheid and G. A. Margulis, Lyapunov indices of a product of random matrices, Russian Math. Surveys, 44, 5, 1989, 11-71. Zbl0705.60012MR1040268
  8. [8] Y. Guivarc'h et A. Raugi, Frontières de Fürstenberg. Propriétés de contraction et théorème de convergence, Zeit. Wahr. Geb., 69, 1985, p.187-242. Zbl0558.60009MR779457
  9. [9] Y. Guivarc'h et A. Raugi, Propriétés de contraction d'un semigroupe de matrices inversibles. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel Journal of Mathematics, vol 65, 2, 1989, p. 165-196. Zbl0677.60007MR998669
  10. [10] V. A. Kaimanovich, Lyapunov exponents, Symmetric Spaces, and a multiplicative ergodic theorem for semisimple Lie groups, J. Soviet Math., 47, 2, 1989, 2887-2398. Zbl0696.22012MR947327
  11. [11] A. Katok and B. Hasselblatt, Introduction to the modem theory of dynamical Systems, University press, 1995, Encyclopedia of mathematics and its applications. Zbl0878.58019MR1326374
  12. [12] J. F. C. Kingman, The ergodic theory of subadditive processes, J. Royal Statist. Soc, 30, 1968, 499-510. Zbl0182.22802MR254907
  13. [13] F. Ledrappier, Quelques propriétés asymptotiques des produits de matrices aléatoires, Lecture Notes in Math., 1097, 1982, 306-396. Zbl0578.60029
  14. [14] E. Le Page, Théorèmes limites pour les produits de matrices aléatoires. Probability measures on groups, Proceedings Oberwolfach, Lectures Notes Series in Math., 928, 1982, 258-303. Springer Lecture Notes, 928, 1982, 258-303. Zbl0506.60019MR669072
  15. [15] G. A. Margulis : Discrete groups of semi-simple Lie groups, Springer Verlag, Berlin Heidelberg, New-York, 1991. Zbl0732.22008
  16. [16] V. M. Millionscikov, Metric theory of linear Systems of differential equations, Math. USSR-Sbornik, 6, 1968, pp. 149-158. Zbl0185.16101MR232057
  17. [17] V. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical Systems, Trans. Moscow Math. Soc, 19, 1968, pp 197-231. Zbl0236.93034MR240280
  18. [18] M. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32, 1979, pp. 356-362. Zbl0415.28013MR571089
  19. [19]. A. Raugi : Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math.France, mémoire 54, 1977, 5-118. Zbl0389.60003MR517392
  20. [20] D. Ruelle, Ergodic theory of differentiable dynamical Systems, Publ. IHES, 50, 1979, 275-320. Zbl0426.58014MR556581
  21. [21] V. N. Tutubalin, On limit theorems for a product of random matrices, Theory Probability Appl., 10, 1965, pp. 25-27. Zbl0147.17105MR175169
  22. [22] A. D. Virtser, Central limit theorem for semi-simple Lie groups, Theory Probability Appl., 15, 1970, pp. 667-687. Zbl0232.60004
  23. [23] P. Walters, A dynamical proof of the multiplicative ergodic theorem, TAMS, 335, 1993, 245-257. Zbl0765.28014MR1073779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.