One-dimensional finite range random walk in random medium and invariant measure equation

Julien Brémont

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 1, page 70-103
  • ISSN: 0246-0203

Abstract

top
We consider a model of random walks on ℤ with finite range in a stationary and ergodic random environment. We first provide a fine analysis of the geometrical properties of the central left and right Lyapunov eigenvectors of the random matrix naturally associated with the random walk, highlighting the mechanism of the model. This allows us to formulate a criterion for the existence of the absolutely continuous invariant measure for the environments seen from the particle. We then deduce a characterization of the non-zero-speed regime of the model.

How to cite

top

Brémont, Julien. "One-dimensional finite range random walk in random medium and invariant measure equation." Annales de l'I.H.P. Probabilités et statistiques 45.1 (2009): 70-103. <http://eudml.org/doc/78022>.

@article{Brémont2009,
abstract = {We consider a model of random walks on ℤ with finite range in a stationary and ergodic random environment. We first provide a fine analysis of the geometrical properties of the central left and right Lyapunov eigenvectors of the random matrix naturally associated with the random walk, highlighting the mechanism of the model. This allows us to formulate a criterion for the existence of the absolutely continuous invariant measure for the environments seen from the particle. We then deduce a characterization of the non-zero-speed regime of the model.},
author = {Brémont, Julien},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {finite range Markov chain; Lyapunov eigenvector; invariant measure; stable cone},
language = {eng},
number = {1},
pages = {70-103},
publisher = {Gauthier-Villars},
title = {One-dimensional finite range random walk in random medium and invariant measure equation},
url = {http://eudml.org/doc/78022},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Brémont, Julien
TI - One-dimensional finite range random walk in random medium and invariant measure equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 1
SP - 70
EP - 103
AB - We consider a model of random walks on ℤ with finite range in a stationary and ergodic random environment. We first provide a fine analysis of the geometrical properties of the central left and right Lyapunov eigenvectors of the random matrix naturally associated with the random walk, highlighting the mechanism of the model. This allows us to formulate a criterion for the existence of the absolutely continuous invariant measure for the environments seen from the particle. We then deduce a characterization of the non-zero-speed regime of the model.
LA - eng
KW - finite range Markov chain; Lyapunov eigenvector; invariant measure; stable cone
UR - http://eudml.org/doc/78022
ER -

References

top
  1. [1] S. Alili. Asymptotic behaviour for random walks in random environments. J. Appl. Probab. 36 (1999) 334–349. Zbl0946.60046MR1724844
  2. [2] L. Arnold. Random Dynamical Systems. Springer, Berlin, 1998. Zbl0906.34001MR1723992
  3. [3] E. Bolthausen and I. Goldsheid. Recurrence and transience of random walks in random environments on a strip. Comm. Math. Phys. 214 (2000) 429–447. Zbl0985.60092MR1796029
  4. [4] E. Bolthausen and I. Goldsheid. Lingering random walks in random environment on a strip. Comm. Math. Phys. 278 (2008) 253–288. Zbl1142.82007MR2367205
  5. [5] J. Brémont. On the recurrence of random walks on ℤ in random medium. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1011–1016. Zbl0995.60062MR1872464
  6. [6] J. Brémont. On some random walks on ℤ in random medium. Ann. Probab. 30 (2002) 1266–1312. Zbl1021.60034MR1920108
  7. [7] J. Brémont. Random walks on ℤ in random medium and Lyapunov spectrum. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 309–336. Zbl1042.60022MR2060456
  8. [8] J.-P. Conze and Y. Guivarc’h. Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique. Colloq. Math. 84/85 (2000) 457–480. (Dedicated to the memory of Anzelm Iwanik.) Zbl0963.37009MR1784208
  9. [9] C. Evstigneev. Positive matrix-valued cocycles over dynamical systems. Uspekhi Mat. Nauk 29 (1974) 219–226. Zbl0314.28015MR396906
  10. [10] H. Federer. Geometric Measure Theory. Springer, New York, 1969. Zbl0176.00801MR257325
  11. [11] I. Goldsheid. Linear and sublinear growth and the CLT for hitting times of a random walk in random environment on a strip. Probab. Theory Related Fields 141 (2008) 471–511. Zbl1141.60070MR2391162
  12. [12] H. Hennion. Limit theorems for products of positive random matrices. Ann. Probab. 25 (1997) 1545–1587. Zbl0903.60027MR1487428
  13. [13] M. Karoubi and C. Leruste. Algebraic Topology via Differential Geometry. Cambridge Univ. Press, 1987. Zbl0627.57001MR924372
  14. [14] E. Key. Recurrence and transience criteria for a random walk in a random environment. Ann. Probab. 12 (1984) 529–560. Zbl0545.60066MR735852
  15. [15] S. Kozlov. The averaging method and walks in inhomogeneous environments. Uspekhi Mat. Nauk 40 (1985) 61–120, 238. Zbl0592.60054MR786087
  16. [16] F. Ledrappier. Quelques propriétés des exposants caractéristiques. Ecole d’été de Saint-Flour 1982305–396. Lecture Notes in Math. 1097. Springer, Berlin, 1984. Zbl0578.60029MR876081
  17. [17] A. Lëtchikov. Localization of One-dimensional Random Walks in Random Environments. Harwood Academic Publishers, Chur, 1989. Zbl0684.60056MR1122590
  18. [18] A. Lëtchikov. A criterion for the applicability of the central limit theorem to one-dimensional random walks in random environments. Teor. Veroyatnost. i Primenen. 37 (1992) 576–580. Zbl0771.60051MR1214365
  19. [19] A. Lëtchikov. A criterion for linear drift, and the central limit theorem for one-dimensional random walks in random environments. Russian Acad. Sci. Sb. Math. 79 (1994) 73–92. Zbl0815.60067MR1239753
  20. [20] V. Oseledec. A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems. Trudy Moskov. Mat. Obšč. 19 (1968) 179–210. Zbl0236.93034MR240280
  21. [21] Y. Peres. Domains of analytic continuation for the top Lyapunov exponent. Ann. Inst. H. Poincaré 28 (1992) 131–148. Zbl0794.58023MR1158741
  22. [22] F. Rassoul-Agha. The point of view of the particle on the Law of Large Numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003) 1441–1463. Zbl1039.60089MR1989439
  23. [23] A. Raugi. Théorème ergodique multiplicatif. Produits de matrices aléatoires indépendantes. Fascicule de probabilités, Univ. Rennes I, 1997. Zbl0947.60008
  24. [24] A. Roitershtein. Transient random walks on a strip in a random environment. Ann. Probab. 36 (2008) 2354–2387. Zbl1167.60023MR2478686
  25. [25] A.-S. Sznitman. Topics in random walks in random environment. Lecture given at the School and Conference on Probability Theory, Trieste, May 2002. ICTP Lect. Notes XVII, 2004. Zbl1060.60102MR2198849
  26. [26] O. Zeitouni. Random walks in random environment. Lectures on probability theory and statistics. Ecole d’Eté de probabilités de Saint-Flour XXXI – 2001191–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.