Introduction to Stochastic Field Theory
Publications mathématiques et informatique de Rennes (1975)
- Issue: S4, page 1-5
Access Full Article
topHow to cite
topGuerra, Francesco. "Introduction to Stochastic Field Theory." Publications mathématiques et informatique de Rennes (1975): 1-5. <http://eudml.org/doc/274465>.
@article{Guerra1975,
author = {Guerra, Francesco},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-5},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Introduction to Stochastic Field Theory},
url = {http://eudml.org/doc/274465},
year = {1975},
}
TY - JOUR
AU - Guerra, Francesco
TI - Introduction to Stochastic Field Theory
JO - Publications mathématiques et informatique de Rennes
PY - 1975
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 5
LA - eng
UR - http://eudml.org/doc/274465
ER -
References
top- [1] J. Fröhlich, Verification of Axioms for Euclidean and Relativistic Fields and Haag’s Theorem in a Class of -Models, Ann. Inst. Henry PoincaréXXI, 271 (1974). MR373494
- [2] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin (1972). Zbl0242.60003MR346904
- [3] J. Glimm and A. Jaffe, Quantum Field Theory Models, in Statistical Mechanics and Quantum Field Theory, C. DeWitt, R. Stora, Eds., Gordon and Breach, New York (1971). Zbl0574.01019
- [4] F. Guerra, On Stochastic Field Theory, Suppl. J. de Physique34, Cl-95 (1973).
- [5] F. Guerra, report at the Conference on Quantum Dynamics: Models and Mathematics, Bielefeld, DBR, September 8-12, 1975.
- [6] F. Guerra, L. Rosen and B. Simon, The P(Ø)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Annals of Mathematics101, 111 (1975). MR378670
- [7] F. Guerra and P. Ruggiero, New Interpretation of the Euclidean- Markov Field in the Framework of Physical Minkowski Space-Time, Phys. Rev. Lett.31, 1022 (1973), and paper in preparation.
- [8] T. Nakano, Quantum Field Theory in Terms of Euclidean Parameters, Prog. Theor. Phys.21, 241 (1959). Zbl0088.22003MR101779
- [9] E. Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev.150, 1079 (1966).
- [10] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, 1967. Zbl0165.58502MR214150
- [11] E. Nelson, Construction of Quantum Fields from Markoff Fields, Journal of Functional Analysis12, 94 (1973), Zbl0252.60053MR343815
- E. NelsonThe Free Markoff Field, Journal of Functional Analysis12, 211 (1973). Zbl0273.60079MR343816
- [12] E. Nelson, Probability Theory and Euclidean Field Theory, contribution to [18]. Zbl0367.60108
- [13] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's Functions, Comm. Math. Phys.31, 83 (1973), 42, 281 (1975). Zbl0303.46034
- [14] J. Schwinger, On the Euclidean Structure of Relativistic Field Theory, Proc, Nat. Acad. Sc. U.S.44, 956 (1958). Zbl0082.42502MR97250
- [15] B. Simon, The P(Ø)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics, 1974. Zbl1175.81146MR489552
- [16] R. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Benjamin, New York, 1964. Zbl0135.44305MR161603
- [17] K. Symanzik, Euclidean Quantum Field Theory, in Local Quantum Theory, R. Jost, Ed. , Academic Press, New York, 1969.
- [18] G.- Velo and A. S. Wightman, Eds. , Constructive Quantum Field Theory, Springer Verlag, Berlin, 1973. MR395513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.