Introduction to Stochastic Field Theory

Francesco Guerra

Publications mathématiques et informatique de Rennes (1975)

  • Issue: S4, page 1-5

How to cite


Guerra, Francesco. "Introduction to Stochastic Field Theory." Publications mathématiques et informatique de Rennes (1975): 1-5. <>.

author = {Guerra, Francesco},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-5},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Introduction to Stochastic Field Theory},
url = {},
year = {1975},

AU - Guerra, Francesco
TI - Introduction to Stochastic Field Theory
JO - Publications mathématiques et informatique de Rennes
PY - 1975
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 5
LA - eng
UR -
ER -


  1. [1] J. Fröhlich, Verification of Axioms for Euclidean and Relativistic Fields and Haag’s Theorem in a Class of P ( ϕ ) 2 -Models, Ann. Inst. Henry PoincaréXXI, 271 (1974). MR373494
  2. [2] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin (1972). Zbl0242.60003MR346904
  3. [3] J. Glimm and A. Jaffe, Quantum Field Theory Models, in Statistical Mechanics and Quantum Field Theory, C. DeWitt, R. Stora, Eds., Gordon and Breach, New York (1971). Zbl0574.01019
  4. [4] F. Guerra, On Stochastic Field Theory, Suppl. J. de Physique34, Cl-95 (1973). 
  5. [5] F. Guerra, report at the Conference on Quantum Dynamics: Models and Mathematics, Bielefeld, DBR, September 8-12, 1975. 
  6. [6] F. Guerra, L. Rosen and B. Simon, The P(Ø)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Annals of Mathematics101, 111 (1975). MR378670
  7. [7] F. Guerra and P. Ruggiero, New Interpretation of the Euclidean- Markov Field in the Framework of Physical Minkowski Space-Time, Phys. Rev. Lett.31, 1022 (1973), and paper in preparation. 
  8. [8] T. Nakano, Quantum Field Theory in Terms of Euclidean Parameters, Prog. Theor. Phys.21, 241 (1959). Zbl0088.22003MR101779
  9. [9] E. Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev.150, 1079 (1966). 
  10. [10] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, 1967. Zbl0165.58502MR214150
  11. [11] E. Nelson, Construction of Quantum Fields from Markoff Fields, Journal of Functional Analysis12, 94 (1973), Zbl0252.60053MR343815
  12. E. NelsonThe Free Markoff Field, Journal of Functional Analysis12, 211 (1973). Zbl0273.60079MR343816
  13. [12] E. Nelson, Probability Theory and Euclidean Field Theory, contribution to [18]. Zbl0367.60108
  14. [13] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's Functions, Comm. Math. Phys.31, 83 (1973), 42, 281 (1975). Zbl0303.46034
  15. [14] J. Schwinger, On the Euclidean Structure of Relativistic Field Theory, Proc, Nat. Acad. Sc. U.S.44, 956 (1958). Zbl0082.42502MR97250
  16. [15] B. Simon, The P(Ø)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics, 1974. Zbl1175.81146MR489552
  17. [16] R. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Benjamin, New York, 1964. Zbl0135.44305MR161603
  18. [17] K. Symanzik, Euclidean Quantum Field Theory, in Local Quantum Theory, R. Jost, Ed. , Academic Press, New York, 1969. 
  19. [18] G.- Velo and A. S. Wightman, Eds. , Constructive Quantum Field Theory, Springer Verlag, Berlin, 1973. MR395513

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.