Verification of axioms for euclidean and relativistic fields and Haag’s theorem in a class of P ( ϕ ) 2 -models

Jürg Fröhlich

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 21, Issue: 4, page 271-317
  • ISSN: 0246-0211

How to cite

top

Fröhlich, Jürg. "Verification of axioms for euclidean and relativistic fields and Haag’s theorem in a class of $P(\varphi )_2$-models." Annales de l'I.H.P. Physique théorique 21.4 (1974): 271-317. <http://eudml.org/doc/75831>.

@article{Fröhlich1974,
author = {Fröhlich, Jürg},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {271-317},
publisher = {Gauthier-Villars},
title = {Verification of axioms for euclidean and relativistic fields and Haag’s theorem in a class of $P(\varphi )_2$-models},
url = {http://eudml.org/doc/75831},
volume = {21},
year = {1974},
}

TY - JOUR
AU - Fröhlich, Jürg
TI - Verification of axioms for euclidean and relativistic fields and Haag’s theorem in a class of $P(\varphi )_2$-models
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 21
IS - 4
SP - 271
EP - 317
LA - eng
UR - http://eudml.org/doc/75831
ER -

References

top
  1. [1] H. Araki, J. Math. Phys., t. 1, 1960, p. 492. Zbl0099.22906MR127821
  2. [2] H. Araki, Comm. Math. Phys., t. 20, 1971, p. 9. Zbl0203.57101MR290709
  3. [3] P. Colella and O. Lanford, « Sample Field Behaviour for the Free Markov Random Field », in Constructive Quantum Field Theory, G. Velo and A. Wightman (eds.), Lecture Notes in Physics, Vol. 25, Springer Verlag, Berlin-Heidelberg-New York, 1974. Zbl0346.28004MR395513
  4. [4] J. Dimock, Asymptotic Perturbation Expansion in the P(ϕ)2 Quantum Field Theory, NYU Preprint, 1973. MR334756
  5. [5] E.B. Dynkin, Markov Processes, Vol. I, II, Springer-Verlag, Berlin-Heidelberg- New York, 1965. Zbl0132.37901MR193671
  6. [6] J. Fröhlich, Schwinger Functions and Their Generating Functionals, I. Helv. Phys. Acta, t. 47, 1974, p. 265. Zbl0345.46057MR436830
  7. [7] J. Fröhlich, Schwinger Functions and Their Generating Functionals, II. Harvard Preprint, 1973, to appear in Adv. Math. Zbl0345.46058MR436830
  8. [8] J. Glimm, Comm. Math. Phys., t. 8, 1968, p. 12. Zbl0173.29903MR231601
  9. [9] J. Glimm and A. Jaffe, « Boson Quantum Field Models », in Mathematics of Contemporary Physics, ed. by R. Streater, Academic Press, New York-London, 1972. MR674511
  10. [10] J. Glimm and A. Jaffe, J. Math. Phys., t. 13, 1972, p. 1568. 
  11. [11] J. Glimm and A. Jaffe, « The Entropy Principle for Vertex Functions in Quantum Field Models », to appear in Ann. Inst. « Henri Poincaré ». Zbl0191.27101MR391796
  12. [12] J. Glimm, A. Jaffe, and T. Spencer, « The Wightman Axioms and Particle Structure in the P(ϕ)2 Quantum Field Model », to appear in Ann. Math. 
  13. [13] J. Glimm, A. Jaffe, and T. Spencer, « The Particle Structure of the Weakly Coupled P(ϕ)2 Models and Other Applications of High Temperature Expansions, Part II », in Constructive Quantum Field Theory, G. Velo and A. Wightman (eds.), Lecture Notes in Physics, Vol. 25, Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR395513
  14. [14] F. Guerra, Phys. Rev. Lett., t. 28, 1972, p. 1213. 
  15. [15] F. Guerra, L. Rosen, and B. Simon, Comm. Math. Phys., t. 27, 1972, p. 10 ; and t. 29, 1973, p. 233. 
  16. [16] F. Guerra, L. Rosen, and B. Simon, « The P(φ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics », to appear in Ann. Math. 
  17. [17] G. Hegerfeldt, From Euclidean to Relativistic Fields, University of Göttingen, Preprint, 1973. 
  18. [18] R. Jost, « The General Theory of Quantized Fields », Lectures in Applied Mathematics, American Math. Soc., Providence, 1965. Zbl0127.19105MR177667
  19. [19] J. Lew, Princeton Thesis, Princeton University, 1960. 
  20. [20] R. Minlos, Tr. Mosk. Mat. Obs., t. 8, 1959, p. 471. 
  21. [21] E. Nelson, A Quartic Interaction in Two Dimensions, ed. by R. Goodman and I. Segal, MIT Press, Cambridge, 1966. MR210416
  22. [22] E. Nelson, J. Funct. Anal., t. 11, 1972, p. 211. Zbl0239.47012
  23. [23] E. Nelson, « Quantum Fields and Markov Fields », in Proceedings of the Summer Institute on Partial Differential Equations, Berkeley, 1971, American Math. Soc., Providence, 1973. Zbl0279.60096MR436832
  24. [24] E. Nelson, J. Funct. Anal., t. 12, 1973, p. 97. Zbl0252.60053
  25. [25] E. Nelson, J. Funct. Anal., t. 12, 1973, p. 211. Zbl0273.60079
  26. [26] E. Nelson, « Probability Theory and Euclidean Field Theory », in Constructive Quantum Field Theory, G. Velo and A. Wightman (eds.), Lecture Notes in Physics, Vol. 25, Springer Verlag, Berlin-Heidelberg-New York, 1974. Zbl0367.60108MR395513
  27. [27] C. Newman, Zeros of the Partition Function for Generalized Ising Systems, NYU Preprint, 1973. MR484184
  28. [28] K. Osterwalder and R. Schrader, « Euclidean Fermi Fields and a Feynman-Kac Formula for Boson-Fermion Models », to appear in Helv. Phys. Acta. MR366276
  29. [29] K. Osterwalder and R. Schrader, Comm. Math. Phys., t. 31, 1973, p. 83. Zbl0274.46047MR329492
  30. [30] K. Osterwalder, « Euclidean Green's Functions and Wightman Distributions », in Constructive Quantum Field Theory, G. Velo and A. Wightman (eds.), Lecture Notes in Physics, Vol. 25, Springer-Verlag, Berlin-Heidelberg-New York, 1974. Zbl0335.46042
  31. [31] K. Osterwalder and R. Schrader, to appear in Comm. Math. Phys. MR329492
  32. [32] M. Reed, and L. Rosen, Support Properties of the Free Measure for Boson Fields, Princeton Preprint, 1973. Zbl0285.60026
  33. [33] D. Ruelle, Statistical Mechanics (Rigorous Results), W. A. Benjamin, New York- Amsterdam, 1969. Zbl0177.57301MR289084
  34. [34] R. Schrader, On the Euclidean Version of Haag's Theorem in P(ϕ)2 Theories, Freie Universität Berlin Preprint, 1973. 
  35. [35] B. Simon and R. Griffiths, Comm. Math. Phys., t. 33, 1973, p. 145. MR428998
  36. [36] B. Simon, « Correlation Inequalities and the Mass Gap in P(ϕ)2, II. Uniqueness of the Vacuum for a Class of Strongly Coupled Theories », Ann. Math., to appear. MR373511
  37. [37] B. Simon, « The P(ϕ)2 Euclidean (Quantum) Field Theory », to appear in Princeton Series in Physics, Princeton University Press, 1974. Zbl1175.81146MR489552
  38. [38] B. Simon, « Positivity of the Hamiltonian Semigroup and the Construction of Euclidean Region Fields », to appear in Helv. Phys. Acta. MR381541
  39. [39] T. Spencer, The Mass Gap for the P(ϕ)2 Quantum Field Model with a Strong External Field, NYU Preprint, 1973. MR363294
  40. [40] R. Streater and A. Wightman, PCT, Spin and Statistics and All That, W. A. Benjamin, New York-Amsterdam, 1964. Zbl0135.44305MR161603
  41. [41] K. Symanzik, « Euclidean Quantum Field Theory » in Local Quantum Theory, Proceedings of the International School of Physics, « Enrico Fermi », Course 45, ed. by R. Jost, Academic Press, New York-London, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.