Finite Element Methods for Mildly Nonlinear Elliptic Equations and Variational Inequalities

J. R. Whiteman; M. Aslam Noor

Publications mathématiques et informatique de Rennes (1976)

  • Issue: S5, page 1-12

How to cite

top

Whiteman, J. R., and Aslam Noor, M.. "Finite Element Methods for Mildly Nonlinear Elliptic Equations and Variational Inequalities." Publications mathématiques et informatique de Rennes (1976): 1-12. <http://eudml.org/doc/274497>.

@article{Whiteman1976,
author = {Whiteman, J. R., Aslam Noor, M.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S5},
pages = {1-12},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Finite Element Methods for Mildly Nonlinear Elliptic Equations and Variational Inequalities},
url = {http://eudml.org/doc/274497},
year = {1976},
}

TY - JOUR
AU - Whiteman, J. R.
AU - Aslam Noor, M.
TI - Finite Element Methods for Mildly Nonlinear Elliptic Equations and Variational Inequalities
JO - Publications mathématiques et informatique de Rennes
PY - 1976
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S5
SP - 1
EP - 12
LA - eng
UR - http://eudml.org/doc/274497
ER -

References

top
  1. 1. Brezis H., and Stampacchia G., Sur la regularité de la solution d'inequations elliptiques. Bull. Soc. Math.France96, 153-180, 1968. Zbl0165.45601MR239302
  2. 2. Ciarlet, P.G., and Raviart, P.A., General Lagrange and Hermite interpolation in R n with application to finite element methods. Arch. Rat. Mech. Anal.46, 177-199, 1972. Zbl0243.41004MR336957
  3. 3. Ciarlet, P.G., Schultz, M.H., and Varga, R.S., Numerical methods of high-order accuracy for nonlinear boundary value problems, I. One dimensional problems. Numer. Math.9, 394-430, 1967. Zbl0155.20403MR221761
  4. 4. Dailey, J.W., and Pierce, J.G., Error bounds for the Galerkin method applied to singular and nonsingular boundary value problems. Numer. Math.19, 266-282, 1972. Zbl0244.65075MR301954
  5. 5. Falk, R.S., Error estimates for the approximation of a class of variational inequalities. Math. Comp.28, 963-971, 1974. Zbl0297.65061MR391502
  6. 6. Fremond, M., Dual formulations for potential and complementary energies. Unilateral boundary conditions. Application to the finite element method, pp. 175-188 of J.R. Whiteman (ed.), The Mathematics of Finite Elements and Applications. Academic Press, London, 1973. Zbl0297.73062
  7. 7. Lions, J.L., and Stampacchia, G., Variational inequalities. Comm. Pure. Appl. Math.20, 493-519, 1967. Zbl0152.34601MR216344
  8. 8. Mosco, U., An introduction to the approximate solution of variational inequalities. In Constructive Aspects of Functional Analysis, Edizione Cremonese, Roma, 499-685, 1973. Zbl0266.49005
  9. 9. Mosco, U., and Strang, G., One sided approximation and variational inequalities. Bull. Amer. Math. Soc., 80, 308-312, 1974. Zbl0278.35026MR331818
  10. 10. Natterer, F., Über die punktweise Konvergenz Finiter Elemente. Numer. Math.25, 6-77, 1975. Zbl0331.65073MR474884
  11. 11. Natterer, F., Optimal L2-Konvergenz Finiter Elemente bei Variationsungleichungen. I.S.N.M., Birkhäuser Verlag, Basel, (to appear). Zbl0358.65085MR451788
  12. 12. Nitsche, J., Lineare Spline-Funktionen und die Methoden von Ritz fur elliptische Randwertprobleme. Arch. rat. Mech. Anal.36, 348-355, 1970. Zbl0192.44503MR255043
  13. 13. Nitsche, J., L -convergence of finite element approximation. Journées Elements Finis, Rennes, May 1975. Zbl0362.65088MR568857
  14. 14. Nitsche, J., L -convergence of finite element approximations. Mathematical Aspect of the Finite Element Method. Rome, December 1975. Zbl0362.65088MR568857
  15. 15. Noor, M.A., and Whiteman, J.R., Error bounds for finite element solutions of mildly nonlinear elliptic boundary value problems, (to appear in Numerische Mathematik, 1976). Zbl0312.65079MR438742
  16. 16. Noor, M.A., and Whiteman, J.R., Error analysis of nonlinear variational inequalities, (to appear). Zbl0521.65047
  17. 17. Scott, R., Optimal L estimates for the finite element method on irregular meshes (to appear). Zbl0349.65060MR436617
  18. 18. Sibony, M., Approximation of nonlinear inequalities on Banach spaces, pp. 243-260 of A. Talbot (ed.) Approximation Theory. Academic Press, London, 243-260, 1970. Zbl0214.12501MR267334
  19. 19. Stampacchia, G., Formes bilinéares coercitive sur les ensembles convexes, C.R.. Acad. Ac., Paris, 258, 4413-4416, 1964. Zbl0124.06401MR166591
  20. 20. Strang, G., The finite element method - linear and nonlinear applications. International Congress of Mathematics, Vancouver. August, 1974. Zbl0334.65087MR423842
  21. 21. Temam, R., Numerical Analysis. Reidel Publishing Co., Dordrecht, 1973. Zbl0261.65001MR347099
  22. 22. Varga, R.S., Accurate numerical methods for nonlinear boundary value problems, pp. 152-167 of G.Birkhoff and R.S.Varga (eds.), Numerical Solution of Field Problems in Continuum Physics. American Mathematical Society, Providence, Rhode Island, 1970. Zbl0221.65130MR267748
  23. 23. Whiteman, J.R., Some aspects of the Mathematics of finite elements in J.R. Whiteman (ed.), The Mathematics of Finite Elements and Applications II, MAFELAP 1975. Academic Press, London, to appear in 1976. Zbl0351.65027MR455488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.