Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One Dimensional Problem.
P.G. CIARLET; R.S. VARGA; M.H. SCHULTZ
Numerische Mathematik (1966/67)
- Volume: 9, page 394-430
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topCIARLET, P.G., VARGA, R.S., and SCHULTZ, M.H.. "Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One Dimensional Problem.." Numerische Mathematik 9 (1966/67): 394-430. <http://eudml.org/doc/131756>.
@article{CIARLET1966/67,
author = {CIARLET, P.G., VARGA, R.S., SCHULTZ, M.H.},
journal = {Numerische Mathematik},
keywords = {numerical analysis},
pages = {394-430},
title = {Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One Dimensional Problem.},
url = {http://eudml.org/doc/131756},
volume = {9},
year = {1966/67},
}
TY - JOUR
AU - CIARLET, P.G.
AU - VARGA, R.S.
AU - SCHULTZ, M.H.
TI - Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One Dimensional Problem.
JO - Numerische Mathematik
PY - 1966/67
VL - 9
SP - 394
EP - 430
KW - numerical analysis
UR - http://eudml.org/doc/131756
ER -
Citations in EuDML Documents
top- Ivo Babuška, Computation of derivatives in the finite element method
- J. R. Whiteman, M. Aslam Noor, Finite Element Methods for Mildly Nonlinear Elliptic Equations and Variational Inequalities
- František Melkes, The finite element method for non-linear problems
- J. Nitsche, Umkehrsätze für Spline-Approximationen
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.