On the Real Spectrum of a Ring of Global Analytic Functions

Jesùs M. Ruiz

Publications mathématiques et informatique de Rennes (1986)

  • Volume: 1986, Issue: 4, page 84-95

How to cite

top

Ruiz, Jesùs M.. "On the Real Spectrum of a Ring of Global Analytic Functions." Publications mathématiques et informatique de Rennes 1986.4 (1986): 84-95. <http://eudml.org/doc/274598>.

@article{Ruiz1986,
author = {Ruiz, Jesùs M.},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {real spectrum; Hilbert's 17th problem; real Nullstellensatz},
language = {eng},
number = {4},
pages = {84-95},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {On the Real Spectrum of a Ring of Global Analytic Functions},
url = {http://eudml.org/doc/274598},
volume = {1986},
year = {1986},
}

TY - JOUR
AU - Ruiz, Jesùs M.
TI - On the Real Spectrum of a Ring of Global Analytic Functions
JO - Publications mathématiques et informatique de Rennes
PY - 1986
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 1986
IS - 4
SP - 84
EP - 95
LA - eng
KW - real spectrum; Hilbert's 17th problem; real Nullstellensatz
UR - http://eudml.org/doc/274598
ER -

References

top
  1. [AA] Alonso, M.E. ; Andradas, C. : Real spectra of local complete local rings, preprint 1986. Zbl0631.14017MR862206
  2. [BCR] Bochnak, J. ; Coste, M. ; Roy, MF. : Géométrie algébrique réelle, book to appear in Springer-Verlag. Zbl0633.14016MR949442
  3. [Br] Brumfiel, G.W. : Real valuations rings and ideals, in Lecture Notes in Math. 959 (1982) 55-97, Springer-Verlag. Zbl0519.13002MR683129
  4. [CR] Coste, M. ; Roy, M.F. : La topologie du spectre réel, in Contemporary Math. 8 (1982) 27-59, AMS. Zbl0485.14007MR653174
  5. [D] Delfs, H. : The homotopy axiom in semialgebraic cohomology, J. reine angew. Math.355 (1985) 108-128. Zbl0543.55004MR772485
  6. [DG] Delfs, H. ; Gamboa, J.M. : Abstract semialgebraic functions, preprint 1986. 
  7. [FRRz] Fernandez, F. ; Recio, J. ; Ruiz, J.M. : Generalized Thom's lemma in semianalytic geometry, to appear in Bull. Ac. Polonaise Sc. Zbl0634.32008
  8. [Fr] Frisch, J. : Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math.4 (1967) 118-138. Zbl0167.06803MR222336
  9. [L1] Lam, T.Y. : An introduction to real algebra, Sexta Escuela Latino-arnericana de Mat., Oaxtepec (1982). Zbl0577.14016
  10. [L2] Lam, T.Y. : Orderings, valuations and quadratic forms. Conf. Board Math. Sciences, 52 (1983) AMS. Zbl0516.12001MR714331
  11. [L] Lojasiewicz, S. : Ensembles semi-analytiques. Lecture notes1965 at IHES, Bures-sur-Yvette. 
  12. [M1] Matsumura, H. : Commutative Algebra, 2d edition (1980) Benjamin. Zbl0211.06501MR266911
  13. [M2] Matsumura, H. : Noetherian rings with many derivations, in Contributions to Algebra. Ed's Bass, Cassidy, Kovaclc (1977) Academic Press. Zbl0364.13009MR466107
  14. [Rz1] Ruiz, J.M. : Central orderings in fields of real meromorphic function germs, Manuscr. Math.46 (1984) 193-214. Zbl0538.14018MR735520
  15. [Rz2] Ruiz, J.M. : Cônes locaux et complétions, C.R.Ac.Sc.Paris, 302 (1986) 67-69. Zbl0591.13017MR832039
  16. [Rz3] Ruiz, J.M. : On Hilbert's 17th problem and real Nullstellensatz for global analytic functions, Math. Z.190 (1985) 447-454. Zbl0579.14021MR806902
  17. [Rz4] Ruiz, J.M. : Basic properties of analytic and semianalytic germs, preprint 1985. Zbl0634.32007
  18. [Rz5] Ruiz, J.M. : A dimension theorem for real spectra, preprint 1985. Zbl0688.14021MR1011593
  19. [Rz6] Ruiz, J.M. : A going-down theorem for real spectra, preprint 1985. Zbl0688.14020MR1011594
  20. [Rz7] Ruiz, J.M. : Constructibility of closures in real spectra, preprint 1986. 
  21. [Rz8] Ruiz, J.M. : Constructibility of connected components in real spectra, preprint 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.