On the Pointwise Ergodic Behaviour of Transformations Preserving Infinite Measures

Jon Aaronson

Publications mathématiques et informatique de Rennes (1977)

  • Issue: 3, page 1-22

How to cite

top

Aaronson, Jon. "On the Pointwise Ergodic Behaviour of Transformations Preserving Infinite Measures." Publications mathématiques et informatique de Rennes (1977): 1-22. <http://eudml.org/doc/274637>.

@article{Aaronson1977,
author = {Aaronson, Jon},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {3},
pages = {1-22},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {On the Pointwise Ergodic Behaviour of Transformations Preserving Infinite Measures},
url = {http://eudml.org/doc/274637},
year = {1977},
}

TY - JOUR
AU - Aaronson, Jon
TI - On the Pointwise Ergodic Behaviour of Transformations Preserving Infinite Measures
JO - Publications mathématiques et informatique de Rennes
PY - 1977
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 3
SP - 1
EP - 22
LA - eng
UR - http://eudml.org/doc/274637
ER -

References

top
  1. [1] J. Aaronson : On the ergodic theory of non-integrable functions and infinite measure spaces. Israel Journal of Mathematics22, n°2 (1977) pp 163-173 Zbl0376.28018MR444899
  2. [2] J. Aaronson : Rational ergodicity and a metric invariant for Markov shifts. Israel Journal of Mathematics. pp 93-123 Zbl0376.28011MR584018
  3. [3] J. Aaronson : Ergodic theory for inner functions of the upper half plane. Submitted to Ann. I.H.P. Zbl0378.28009
  4. [4] S.D. Chatterji : A general strong law. Inventiones Maths. 9 (1970) pp 235-245. Zbl0193.09301MR266276
  5. [5] W. Feller : Introduction to Probability Theory and its applications, vol. 2Wi-ley, N.Y. (1966) Zbl0138.10207MR210154
  6. [6] A. Hajian, Y. Ito and S. Kakutani : Invariant measures and orbits of dissipative transformations. Advances in Math.9 (1972) pp 52-66 Zbl0236.28010MR302860
  7. [7] E. Hopf : Ergodentheorie : ChelseaN.Y. (1948) Zbl0185.29001JFM63.0786.07
  8. [8] S. Kakutani : Induced measure preserving transformations, Proc. Imp. Acad. Sci.Tokyo19 (1943) pp 635-641 Zbl0060.27406MR14222
  9. [9] J. Komlos : A generalisation of a problem of Steinhaus. Acta. Math. Acad. Sci. Hung.18 (1967) pp 217-229 Zbl0228.60012MR210177
  10. [10] E. Seneta : Regularly varying functions : SpringerLecture notes508, Berlin (1976) Zbl0324.26002MR453936

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.