Displaying similar documents to “On the Pointwise Ergodic Behaviour of Transformations Preserving Infinite Measures”

Ergodic seminorms for commuting transformations and applications

Bernard Host (2009)

Studia Mathematica

Similarity:

Recently, T. Tao gave a finitary proof of a convergence theorem for multiple averages with several commuting transformations, and soon thereafter T. Austin gave an ergodic proof of the same result. Although we give here another proof of the same theorem, this is not the main goal of this paper. Our main concern is to provide tools for the case of several commuting transformations, similar to the tools successfully used in the case of a single transformation, with the idea that they may...

Some thoughts about Segal's ergodic theorem

Daniel W. Stroock (2010)

Colloquium Mathematicae

Similarity:

Over fifty years ago, Irving Segal proved a theorem which leads to a characterization of those orthogonal transformations on a Hilbert space which induce ergodic transformations. Because Segal did not present his result in a way which made it readily accessible to specialists in ergodic theory, it was difficult for them to appreciate what he had done. The purpose of this note is to state and prove Segal's result in a way which, I hope, will win it the recognition which it deserves. ...

On a pointwise ergodic theorem for multiparameter semigroups.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Similarity:

Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averages Anf(x) = (n + 1)-d Σ0≤ni≤n f(T1 n1 T2 n2...

Genericity of nonsingular transformations with infinite ergodic index

J. Choksi, M. Nadkarni (2000)

Colloquium Mathematicae

Similarity:

It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense G δ set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite...