Équations cinétiques et changement d'échelle

C. Bardos

Recherche Coopérative sur Programme n°25 (1986)

  • Volume: 36, page 1-17

How to cite

top

Bardos, C.. "Équations cinétiques et changement d'échelle." Recherche Coopérative sur Programme n°25 36 (1986): 1-17. <http://eudml.org/doc/274672>.

@article{Bardos1986,
author = {Bardos, C.},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {1-17},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Équations cinétiques et changement d'échelle},
url = {http://eudml.org/doc/274672},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Bardos, C.
TI - Équations cinétiques et changement d'échelle
JO - Recherche Coopérative sur Programme n°25
PY - 1986
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 36
SP - 1
EP - 17
LA - fre
UR - http://eudml.org/doc/274672
ER -

References

top
  1. [1] C. Bardos et P. Degond : Global Existence for the Vlasov-Poisson Equation in 3 space variable with small initial Data. Annales de l'Institut Henri Poincaré. Analyse non linéaire. Zbl0593.35076
  2. [2] C. Bardos et F. Golse : Différents aspects de la notion d'entropie au niveau de l'Equation de Boltzmann et de Navier-Stokes. C.R. Acad. Sci.Paris, t. 299 Série I - 7 (1984). Zbl0575.35073MR762726
  3. [3] R. Caflisch : The Fluid dynamic limit of the non linear Boltzmann Equation. Comm. in Pure Appl. Math.3 (1980) p. 651-666. Zbl0424.76060MR586416
  4. [4] S. Chapman et T.G. Cowling : The mathematical theory of non uniform gases. 3rd Ed. Cam. Univ. Press (1970). Zbl0049.26102MR258399
  5. [5] R. Di Perna : Convergence of Approximate Solutions to conservations laws. Arch. Rat. Mech. Anal. (1983). Zbl0519.35054MR684413
  6. [6] J. Ferziger et H. Kaper : Mathematical Theory of Transport Processes in Gases. (North HollandAmsterdam1972). 
  7. [7] H. Grad : Asymptotic equivalence of the Navier-Stokes and non linear Boltzmann Equation in Proc. Symp. Appl. XVII. Application of non linear P.D.E. in Mathematics, p. 154-183. Zbl0144.48203MR184507
  8. [8] K. Hamdache : Quelques résultats pour l'Equation de Boltzmann. Note C.R. Acad. Sci.Paris. Zbl0575.76077
  9. [9] R. Ilner et M. Shinbrot : The Boltzmann Equation global existence in an infinite vacuum. A paraître dans Com. Math. Phys. Zbl0599.76088
  10. [10] S. Klainerman : Long time behaviour of the solution to non linear equations, Arch. Rat. Mech. and Anal. Vol. 78 (1982), p. 73-98. Zbl0502.35015
  11. [11] P. Lax : Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock waves. S.I.A.M. Regional ConferenceSerie in Math.II1973. Zbl0268.35062MR350216
  12. [12] T. Nishida : Fluid dynamical limit of the non linear Boltzmann Equation to the level of the compressible Euler Equation. Comm. Math. Phys.61 (1978), p. 119-148. Zbl0381.76060MR503305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.