On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem
Publications mathématiques et informatique de Rennes (1975)
- Issue: S3, page 1-22
Access Full Article
topHow to cite
topLesaint, Pierre. "On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem." Publications mathématiques et informatique de Rennes (1975): 1-22. <http://eudml.org/doc/274805>.
@article{Lesaint1975,
author = {Lesaint, Pierre},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S3},
pages = {1-22},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem},
url = {http://eudml.org/doc/274805},
year = {1975},
}
TY - JOUR
AU - Lesaint, Pierre
TI - On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem
JO - Publications mathématiques et informatique de Rennes
PY - 1975
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S3
SP - 1
EP - 22
LA - eng
UR - http://eudml.org/doc/274805
ER -
References
top- /1/ Ciarlet, P.G. : Conforming and non-conforming finite element: methods for solving the plate problem, Conference on the Numerìcal Solution of Differentiel Equation, University of Dundee, July 03-06, 1973. Zbl0285.65072MR423832
- /2/ Ciarlet, P.G. ; Raviart, P.-A. : La Méthode des éléments finis pour les problèmes sur limite elliptique. (To appear).
- /3/ Lascaux, P. ; Lesaint, P. : Some Non-conforming Finite Elements for the Plate Bending Problem, To appear in R.A.I.R.O. Zbl0319.73042
- /4/ Nitshe, J. : Convergence of Non-conforming Elements. Paper presented at the Symposium on Nathamatical Aspects of Finite Elements in Partial Differential Equations. Madisoff, Wisconsin, April 1-3, 1974,
- /5/ Argyris, J.H. ; Fried, I. ; Scarpf, D.E. : The TUBA family of plate elements for the matrix displacement method, the Aeronautical J.R. Ac. S.72 (1968), 701-709.
- /6/ Iron, B.M. ; Razzaque, A. : Experience with the patch test for convergence of finite elements, The Mathematical Foundations of the finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), pp. 557-587, Academic Press, New York, 1972. Zbl0279.65087MR423839
- /7/ Strang, G. : Variational Crimes in the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor) pp. 689-710, Academic Press, New York, 1972. Zbl0264.65068MR413554
- /8/ Wilson, E.L. ; Taylor, R.L. ; Doherty W.P. ; Ghaboussi J. : Incompatible Displacament Models. Symposium on Numerical and Computer Methods in Structural Engincering, O.N.R.University of Illinois, 1971.
- /9/ Necas, J. : Les Méthodes Directes en Théorie des Equations Elliptique, Masson, Paris, 1967. Zbl1225.35003
- /10/ Landau, L. ; Lifchitz, E. : Théorie de l'Elasticité, Mir, Moscou, 1967. Zbl0166.43101
- /11/ Zienkidncz, O.C. : The Finite Element Method in Engincering Science. Mc Grawhill, London, 1971
- /12/ Strang, G. ; Fix, G. : An analysis of Finite Element Method, Prentice-Hall, Englewead Cliffs, 1973. Zbl0356.65096MR443377
- /13/ Ciarlet, P.G. ; Raviart. P.-A. : General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational Mech. Anal.46 (1972), 177-192. Zbl0243.41004MR336957
- /14/ Aubin, J.P.Behavior of the error of the approximate solutions, of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scuola Norm. Sup. Pisa21 (1967), 599-637, Zbl0276.65052MR233068
- /15/ Nitsche, J. : Ein Kriterium für die quasi-optimalität des Ritzchen Verfahrens, Numer. Math.11 (1968), 346-348. Zbl0175.45801MR233502
- /16/ Bramble, J.H. ; Hilbert, S.H. : Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math.16 (1971), 362-369. Zbl0214.41405MR290524
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.