On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem

Pierre Lesaint

Publications mathématiques et informatique de Rennes (1975)

  • Issue: S3, page 1-22

How to cite

top

Lesaint, Pierre. "On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem." Publications mathématiques et informatique de Rennes (1975): 1-22. <http://eudml.org/doc/274805>.

@article{Lesaint1975,
author = {Lesaint, Pierre},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S3},
pages = {1-22},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem},
url = {http://eudml.org/doc/274805},
year = {1975},
}

TY - JOUR
AU - Lesaint, Pierre
TI - On the Convergence of Wilson's Non-Conforming Element for Solving the Elastic Problem
JO - Publications mathématiques et informatique de Rennes
PY - 1975
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S3
SP - 1
EP - 22
LA - eng
UR - http://eudml.org/doc/274805
ER -

References

top
  1. /1/ Ciarlet, P.G. : Conforming and non-conforming finite element: methods for solving the plate problem, Conference on the Numerìcal Solution of Differentiel Equation, University of Dundee, July 03-06, 1973. Zbl0285.65072MR423832
  2. /2/ Ciarlet, P.G. ; Raviart, P.-A. : La Méthode des éléments finis pour les problèmes sur limite elliptique. (To appear). 
  3. /3/ Lascaux, P. ; Lesaint, P. : Some Non-conforming Finite Elements for the Plate Bending Problem, To appear in R.A.I.R.O. Zbl0319.73042
  4. /4/ Nitshe, J. : Convergence of Non-conforming Elements. Paper presented at the Symposium on Nathamatical Aspects of Finite Elements in Partial Differential Equations. Madisoff, Wisconsin, April 1-3, 1974, 
  5. /5/ Argyris, J.H. ; Fried, I. ; Scarpf, D.E. : The TUBA family of plate elements for the matrix displacement method, the Aeronautical J.R. Ac. S.72 (1968), 701-709. 
  6. /6/ Iron, B.M. ; Razzaque, A. : Experience with the patch test for convergence of finite elements, The Mathematical Foundations of the finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), pp. 557-587, Academic Press, New York, 1972. Zbl0279.65087MR423839
  7. /7/ Strang, G. : Variational Crimes in the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor) pp. 689-710, Academic Press, New York, 1972. Zbl0264.65068MR413554
  8. /8/ Wilson, E.L. ; Taylor, R.L. ; Doherty W.P. ; Ghaboussi J. : Incompatible Displacament Models. Symposium on Numerical and Computer Methods in Structural Engincering, O.N.R.University of Illinois, 1971. 
  9. /9/ Necas, J. : Les Méthodes Directes en Théorie des Equations Elliptique, Masson, Paris, 1967. Zbl1225.35003
  10. /10/ Landau, L. ; Lifchitz, E. : Théorie de l'Elasticité, Mir, Moscou, 1967. Zbl0166.43101
  11. /11/ Zienkidncz, O.C. : The Finite Element Method in Engincering Science. Mc Grawhill, London, 1971 
  12. /12/ Strang, G. ; Fix, G. : An analysis of Finite Element Method, Prentice-Hall, Englewead Cliffs, 1973. Zbl0356.65096MR443377
  13. /13/ Ciarlet, P.G. ; Raviart. P.-A. : General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational Mech. Anal.46 (1972), 177-192. Zbl0243.41004MR336957
  14. /14/ Aubin, J.P.Behavior of the error of the approximate solutions, of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scuola Norm. Sup. Pisa21 (1967), 599-637, Zbl0276.65052MR233068
  15. /15/ Nitsche, J. : Ein Kriterium für die quasi-optimalität des Ritzchen Verfahrens, Numer. Math.11 (1968), 346-348. Zbl0175.45801MR233502
  16. /16/ Bramble, J.H. ; Hilbert, S.H. : Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math.16 (1971), 362-369. Zbl0214.41405MR290524

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.