Sur la complexité du principe de Tarski-Seidenberg

Joos Heintz; Marie-Françoise Roy; Pablo Solerno

Publications mathématiques et informatique de Rennes (1989)

  • Volume: 309, Issue: 4, page 103-120

How to cite

top

Heintz, Joos, Roy, Marie-Françoise, and Solerno, Pablo. "Sur la complexité du principe de Tarski-Seidenberg." Publications mathématiques et informatique de Rennes 309.4 (1989): 103-120. <http://eudml.org/doc/274810>.

@article{Heintz1989,
author = {Heintz, Joos, Roy, Marie-Françoise, Solerno, Pablo},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {Tarski-Seidenberg principle; ordered fields; algorithm computing a quantifier free formula; real closed field; parallel complexity; sequential complexity},
language = {fre},
number = {4},
pages = {103-120},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Sur la complexité du principe de Tarski-Seidenberg},
url = {http://eudml.org/doc/274810},
volume = {309},
year = {1989},
}

TY - JOUR
AU - Heintz, Joos
AU - Roy, Marie-Françoise
AU - Solerno, Pablo
TI - Sur la complexité du principe de Tarski-Seidenberg
JO - Publications mathématiques et informatique de Rennes
PY - 1989
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 309
IS - 4
SP - 103
EP - 120
LA - fre
KW - Tarski-Seidenberg principle; ordered fields; algorithm computing a quantifier free formula; real closed field; parallel complexity; sequential complexity
UR - http://eudml.org/doc/274810
ER -

References

top
  1. [1] Ben-Or M. , Kozen D. , Reif J. : The complexity of elementary algebra and geometry. J. of Computation and Systems Sciences32251-264 (1986). Zbl0634.03031MR851192
  2. [2] Berkowitz S. J.: On Computing the determinant in small parallel time using a small number of processors. Information Processing Letter18 (1984), 147-150. Zbl0541.68019MR760366
  3. [3] Bochnak J., Coste M., Roy M.-F.: Géométrie algébrique réelle. Springer Verlag (1987). Zbl0633.14016MR949442
  4. [4] Canny J.: Some algebraic and geometric computations in PSPACE. ACM Symposium on the theory of computation, 460-467 (1988). 
  5. [5] Canny J.: The complexity of robot motion planning. MIT Press (1989). MR952555
  6. [6] Collins G. : Quantifier elimination for real closed fields by cylindric algebraic decomposition. In Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Sciences, vol. 33, pp. 134-183, Springer-Verlag, Berlin (1975). Zbl0318.02051MR403962
  7. [7] Caniglia L., Galligo A., Heintz J.: Some new effectivity bounds in computational geometry. Proc. AAECC-6 (Rome1988) - Best Paper Award AAECC-6 - SpringerLecture Notes in Computer Science357131-151. Zbl0685.68044MR1008498
  8. [8] Coste M. , Roy M.-F. : Thom's lemma, the coding of real algebraic numbers and the topology of semi-algebraic sets. J. of Symbolic Computation5121-129 (1988). Zbl0689.14006MR949115
  9. [9] Davenport J., Heintz J.: Real quantifier elimination is doubly exponential. J. of Symbolic Computation529-35 (1988). Zbl0663.03015MR949111
  10. [10] Fitchas N., Galligo A., Morgenstern J.: Algorithmes rapides en séquentiel et en parallle pour l'élimina- tion des quantificateurs en géométrie élémentaire. Séminaire Structures Ordonnées, U.E.R. de Math.Univ. Paris VII (1987). Zbl0704.03014
  11. [11] Fitchas N., Galligo A., Morgenstern J.: Precise sequential and parallel complexity bounds for the quantifier elimination of algebraically closed fields. A paraître dansJournal of Pure and Applied Algebra. Zbl0716.03023
  12. [12] von zur Gathen J.: Parallel arithmetic computations: a survey. Proc 13th Conf.MFCS (1986). Zbl0616.68037
  13. [13] Gonzalez L., Lombardi H., Recio T., Roy M.-F.: Sturm-Habicht sequences. Proceedings ISSAC1989. 
  14. [14] Gonzalez L., Lombardi H., Recio T., Roy M.-F.: Sous-résultants et spécialisation de la suite de Sturm. A paraitre au RAIRO Informatique théorique. Zbl0732.68059
  15. [15] Grigor'ev D.: Complexity of deciding Tarski algebra. J. Symbolic Computation5 (1988) 65-108. Zbl0689.03021MR949113
  16. [16] Grigor'ev D., Vorobjov N.: Solving systems of polynomial inequalities in subexponential time. J. Symbolic Computation5 (1988) 37-64. Zbl0662.12001MR949112
  17. [17] Heintz J.Definability and fast quantifier elimination in algebraically closed fieldsTheor. Comput. Sci.24 (1983) 239-27. Zbl0546.03017MR716823
  18. [18] Heintz J., Roy M.F., Solerno P. : On the complexity of semialgebraic sets. Proc. IFIP (San Francisco1989). Zbl0704.03013
  19. [19] Heintz J., Roy M.-F., Solerno P.: Complexité du principe de Tarski- Seidenberg. Compte-Rendus de l'Académie des Sciences Paris. 309825-830 (1989). Zbl0704.03013MR1055203
  20. [20] Kobayashi H., Moritsugu S., Hogan R.W.: On solving systems of algebraic equations. Soumis au Journal of Symbolic Computation. Zbl0693.68020
  21. [21] Krick T. : Thèse. Université de Buenos Aires (en préparation). 
  22. [22] Loos R.: Generalized poynomial reaminder sequences. Dans Computer Algebra, Symbolic and Algebraic Computation115-138. Edit par Buchberger, Collins, Loos. Springer Verlag1982. Zbl0577.13001
  23. [23] Renegar J.: A faster PSPACE algorithm for deciding the existential theory of the reals. Technical Report792, Cornell University Ithaca (1988). 
  24. [24] Renegar J.: On the computational complexity and geometry of the first order theory of the reals. Technical Report856, Cornell University Ithaca (1989). Zbl0798.68073
  25. [25] Roy M.-F., Szpirglas A.: Complexity of computations with real algebraic numbers. A paraitre au Journal of Symbolic Computation. Zbl0723.68054
  26. [26] Seidenberg A.: A new decision method for elementary algebra and geometry. Ann. Math.60365-374 (1954). Zbl0056.01804MR63994
  27. [27] Shafarevitch I.S.Algebraic geometry. Springer Verlag (1974) 
  28. [28] Solernó P.: Complejidad de conjuntos semialgebraicos. Thèse. Université de Buenos Aires1989. 
  29. [29] Sturm C : Mémoire sur la résolution des équations numériques. Ins. France Sc. Math. Phys.6 (1835). 
  30. [30] Sylvester T. J. : On a theory of syzygetic relations of two rational integral functions,comprising an application to the theory of Sturm's function. Trans. Roy. Soc.London (1853). Reprint in: Sylvester : Collected Math Papers. ChelseaPub. Comp.NY1983 vol 1429-586. 
  31. [31] Tarski A.: A decision method for elementary algebra and geometry. Berkeley (1951). Zbl0044.25102
  32. [32] Vorobjov N.: Bounds of real roots of a system of algebraic equations. Notes of Sci. Seminars of Leningrad Department of Math.Steklov Inst.137-19. 
  33. [33] Walker R.: Algebraic curves. Princeton University Press (1950). Zbl0039.37701MR33083
  34. [34] Weipsfenning V.: The complexity of lieanr problems in fields. J. Symbolic Computation53-27 (1988). Zbl0646.03005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.