Fractal Wavelet Dimensions and Time Evolution
Recherche Coopérative sur Programme n°25 (1994)
- Volume: 46, page 61-80
Access Full Article
topHow to cite
topHolschneider, Matthias. "Fractal Wavelet Dimensions and Time Evolution." Recherche Coopérative sur Programme n°25 46 (1994): 61-80. <http://eudml.org/doc/274949>.
@article{Holschneider1994,
author = {Holschneider, Matthias},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {fractal wavelet dimensions; wavelet transforms; correlation dimensions; RAGE theorem},
language = {eng},
pages = {61-80},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Fractal Wavelet Dimensions and Time Evolution},
url = {http://eudml.org/doc/274949},
volume = {46},
year = {1994},
}
TY - JOUR
AU - Holschneider, Matthias
TI - Fractal Wavelet Dimensions and Time Evolution
JO - Recherche Coopérative sur Programme n°25
PY - 1994
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 46
SP - 61
EP - 80
LA - eng
KW - fractal wavelet dimensions; wavelet transforms; correlation dimensions; RAGE theorem
UR - http://eudml.org/doc/274949
ER -
References
top- 1. Arnéodo A., Grasseau G., Holschneider M. (1988), On the wavelet transform of multifractals, Phys. Rev. Letters61, 2281-2284 MR966830
- 2. Avron J. & Simon B. (1981), Transient and Recurrent Spectrum, Journ. of Funct. Anal.43, 1 Zbl0488.47021MR639794
- 3. Combes, J. M., Grossmann A. et Tchamitchian P. Editors, (1989), Wavelets, Springer-VerlagBerlin MR1010895
- 4. Cycon H. L., Froese R. G., Kirsch W., Simon B. (1987), Schrödinger Operators, Springer Verlag Zbl0619.47005MR883643
- 5. Grossmann A., Morlet J., Paul T. (1986), Transforms associated to square integrable group representations II: examplesAnn. Inst. Henri Poincar, Physique thorique, 45293-309 Zbl0601.22001MR868528
- 6. Guarneri I., On an Estimate concerning Quantum Diffusion in the Presence of a Fractal Spectrum, to appear in Europhys. Lett. Zbl0817.47078
- 7. Hentschel H. G. E., Procaccia I. (1983), The infinite number of Generalized Dimensions of fractals and strange attractors, Physica8D, 435-444 Zbl0538.58026MR719636
- 8. Holschneider M. (1988), On the wavelet transformation of fractal objectsJ. Stat. Phys., 50953-993 Zbl1084.42518MR951066
- 9. Holschneider M. (1988), L'analyse d'objets fractals et leur transforme en ondelettesThse de doctorat, Universit de Provence (Aix-Marseille I)
- 10. Holschneider M. (1993), Localization properites of wavelet transforms; Journ. Math. Phys.34 (7), 1993, p. 3227-3244 Zbl0778.42027MR1224209
- 11. Holschneider M. (1993), More on the analysis of local regularity through wavelet transforms ; submitted to Journ. Stat. Phys. Zbl0870.42009
- 12. Holschneider M., (1994), Functional Calculus using Wavelet Transforms, J. Math. Phys. (to appear) Zbl0824.44005MR1279336
- 13. Holschneider M., Tchamitchian Ph. (1991), Pointwise Regularity of Riemanns "nowhere differentiable" function, Inventiones Mathematicae, 105, 157-175 Zbl0741.26004MR1109624
- 14. Jaffard S. (1989), Estimations Hlderiennes ponctuelles des fonctions au moyen de leurs coefficients d'ondelettesCRAS Sèr. I308, 7 MR984903
- 15. Ketzmerick R., Petschel G., Geisel T., Slow Decay for Temporal Correlations in Quantum Systems with Cantor Spectra, Preprint Univ. Prankfurt Zbl0900.82111
- 16. Meyer Y. (1990), Ondelettes et Opèrateurs I&II&III, Hermann, Paris Zbl0694.41037MR1085487
- 17. Muzy J. F., Bacry E., Arneodo A., Wavelets and Multifractal Formalism for Singular Signals, Phys. Rev. Lett67, (1992), 3515-3518
- 18. Strichartz R. (1990), Fourier asymptotics of fractal measures, Jour. Funct. Anal., 89, 154 Zbl0693.28005MR1040961
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.