Théorèmes de H. Schubert sur les nœuds câbles
Recherche Coopérative sur Programme n°25 (1994)
- Volume: 46, page 43-59
Access Full Article
topHow to cite
topGramain, André. "Théorèmes de H. Schubert sur les nœuds câbles." Recherche Coopérative sur Programme n°25 46 (1994): 43-59. <http://eudml.org/doc/274988>.
@article{Gramain1994,
author = {Gramain, André},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {43-59},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Théorèmes de H. Schubert sur les nœuds câbles},
url = {http://eudml.org/doc/274988},
volume = {46},
year = {1994},
}
TY - JOUR
AU - Gramain, André
TI - Théorèmes de H. Schubert sur les nœuds câbles
JO - Recherche Coopérative sur Programme n°25
PY - 1994
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 46
SP - 43
EP - 59
LA - fre
UR - http://eudml.org/doc/274988
ER -
References
top- 1. J. W. Alexander, On the subdivision of a 3-space by a polyhedron, Proc. Nat. Acad. Sci.USA10 (1924), 6-8. Zbl50.0659.01JFM50.0659.01
- 2. R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. of the A.M.S.155 (1971), 217-231. Zbl0213.25005MR278287
- 3. G. Burde, H. Zieschang, Knots, Walter de Gruyter (1985). Zbl1009.57003MR808776
- 4. J. W. Cannon, C. D. Feustel, Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. of the A.M.S.215 (1976), 219-239. Zbl0314.55004MR391094
- 5. M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann.69 (1910), 137-168. Zbl41.0543.01MR1511580JFM41.0543.01
- 6. C. D. Feustel, W. Whitten, Groups and complements of knots, Can. J. of Math.30 (1978), 1284-1295. Zbl0373.55003MR511562
- 7. C.McA. Gordon, J. Luecke, Knots are determined by their complements, Journal. of A.M.S.2 (1989), 371-415. Zbl0678.57005MR965210
- 8. A. Gramain, Rapport sur la théorie classique des nœuds (1ère partie), Sém. Bourbaki, exposé n°485 (1975-76), Lect. Notes in Math.567, Springer (1977), 222-237. Zbl0342.57009MR440529
- 9. A. Gramain, Rapport sur la théorie classique des nœuds (2ème partie), Sém. Bourbaki, exposé n°732 (1990-91), Astérisque201-203 (1991), 89-113. Zbl0752.57003MR1157839
- 10. H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Deutsch. Math.- Verein38 (1929), 248-260. Zbl55.0311.03JFM55.0311.03
- 11. D. Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Zeitschrift101 (1967), 131-141. Zbl0183.52102MR219054
- 12. C. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math.66 (1957), 1-26. Zbl0078.16402MR90053
- 13. H. Schubert, Knoten und Vollringe, Acta Mathematica90 (1953), 131-286. Zbl0051.40403MR72482
- 14. P. Scott, A new proof of the annulus and torus theorem, Amer. J. of Math.102 (1980), 241-277 Zbl0439.57004MR564473
- 15. J. Simon, An algebraic classification of knots in , Ann. of Math.97 (1973), 1-13. Zbl0256.55003MR310861
- 16. W. Whitten, Algebraic and geometric characterizations of knots, Inventiones Math.26 (1974), 259-270. Zbl0291.55004MR365548
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.