Théorèmes de H. Schubert sur les nœuds câbles

André Gramain

Recherche Coopérative sur Programme n°25 (1994)

  • Volume: 46, page 43-59

How to cite

top

Gramain, André. "Théorèmes de H. Schubert sur les nœuds câbles." Recherche Coopérative sur Programme n°25 46 (1994): 43-59. <http://eudml.org/doc/274988>.

@article{Gramain1994,
author = {Gramain, André},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {43-59},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Théorèmes de H. Schubert sur les nœuds câbles},
url = {http://eudml.org/doc/274988},
volume = {46},
year = {1994},
}

TY - JOUR
AU - Gramain, André
TI - Théorèmes de H. Schubert sur les nœuds câbles
JO - Recherche Coopérative sur Programme n°25
PY - 1994
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 46
SP - 43
EP - 59
LA - fre
UR - http://eudml.org/doc/274988
ER -

References

top
  1. 1. J. W. Alexander, On the subdivision of a 3-space by a polyhedron, Proc. Nat. Acad. Sci.USA10 (1924), 6-8. Zbl50.0659.01JFM50.0659.01
  2. 2. R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. of the A.M.S.155 (1971), 217-231. Zbl0213.25005MR278287
  3. 3. G. Burde, H. Zieschang, Knots, Walter de Gruyter (1985). Zbl1009.57003MR808776
  4. 4. J. W. Cannon, C. D. Feustel, Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. of the A.M.S.215 (1976), 219-239. Zbl0314.55004MR391094
  5. 5. M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann.69 (1910), 137-168. Zbl41.0543.01MR1511580JFM41.0543.01
  6. 6. C. D. Feustel, W. Whitten, Groups and complements of knots, Can. J. of Math.30 (1978), 1284-1295. Zbl0373.55003MR511562
  7. 7. C.McA. Gordon, J. Luecke, Knots are determined by their complements, Journal. of A.M.S.2 (1989), 371-415. Zbl0678.57005MR965210
  8. 8. A. Gramain, Rapport sur la théorie classique des nœuds (1ère partie), Sém. Bourbaki, exposé n°485 (1975-76), Lect. Notes in Math.567, Springer (1977), 222-237. Zbl0342.57009MR440529
  9. 9. A. Gramain, Rapport sur la théorie classique des nœuds (2ème partie), Sém. Bourbaki, exposé n°732 (1990-91), Astérisque201-203 (1991), 89-113. Zbl0752.57003MR1157839
  10. 10. H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Deutsch. Math.- Verein38 (1929), 248-260. Zbl55.0311.03JFM55.0311.03
  11. 11. D. Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Zeitschrift101 (1967), 131-141. Zbl0183.52102MR219054
  12. 12. C. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math.66 (1957), 1-26. Zbl0078.16402MR90053
  13. 13. H. Schubert, Knoten und Vollringe, Acta Mathematica90 (1953), 131-286. Zbl0051.40403MR72482
  14. 14. P. Scott, A new proof of the annulus and torus theorem, Amer. J. of Math.102 (1980), 241-277 Zbl0439.57004MR564473
  15. 15. J. Simon, An algebraic classification of knots in S 3 , Ann. of Math.97 (1973), 1-13. Zbl0256.55003MR310861
  16. 16. W. Whitten, Algebraic and geometric characterizations of knots, Inventiones Math.26 (1974), 259-270. Zbl0291.55004MR365548

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.