Curves which do not become semi-stable after any solvable extension

Ambrus Pál

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 265-276
  • ISSN: 0041-8994

How to cite

top

Pál, Ambrus. "Curves which do not become semi-stable after any solvable extension." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 265-276. <http://eudml.org/doc/275102>.

@article{Pál2013,
author = {Pál, Ambrus},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {local field; abelian variety; semi-stable reduction},
language = {eng},
pages = {265-276},
publisher = {Seminario Matematico of the University of Padua},
title = {Curves which do not become semi-stable after any solvable extension},
url = {http://eudml.org/doc/275102},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Pál, Ambrus
TI - Curves which do not become semi-stable after any solvable extension
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 265
EP - 276
LA - eng
KW - local field; abelian variety; semi-stable reduction
UR - http://eudml.org/doc/275102
ER -

References

top
  1. [1] P. Deligne - D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Études Sci.36 (1969), pp. 75–109. Zbl0181.48803MR262240
  2. [2] L. Gerritzen, Über Endomorphismen nichtarchimedischer holomorpher Tori, Invent. Math.11 (1970), pp. 27–36. MR286799
  3. [3] L. Gerritzen, On non-archimedean representations of abelian varieties, Math. Ann.196 (1972), pp. 323–346 Zbl0255.14013MR308132
  4. [4] A. Grothendieck - M. Raynaud, Modèles de Néron et monodromie, Groupes de monodromie en Géometrie Algebrique, I, II, Lecture Notes in Math. 288 (Springer, 1972), pp. 313–523. MR354656
  5. [5] D. Harbater, Mock covers and Galois extensions, J. Algebra, 91 (1984), pp. 281–293. Zbl0559.14021MR769574
  6. [6] Gy. Károlyi - A. Pál, The cyclomatic number of connected graphs without solvable orbits, to appear J. Ramanujan Math. Soc. (2012). MR2977358
  7. [7] W. L ü tkebohmert, Formal-algebraic and rigid-analytic geometry, Math. Ann. 286 (1990), pp. 341–371. Zbl0716.32022MR1032938
  8. [8] J. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) (Springer, New York ,1986), pp. 167–212. MR861976
  9. [9] A. Pál, Solvable points on projective algebraic curves, Canad. J. Math.56 (2004), pp. 612–637. Zbl1066.14032MR2057289
  10. [10] A. Pál, Solvable points on genus one curves over local fields, Journal of the Institute of Mathematics of Jussieu (2012). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.