Curves which do not become semi-stable after any solvable extension
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 265-276
- ISSN: 0041-8994
Access Full Article
topHow to cite
topPál, Ambrus. "Curves which do not become semi-stable after any solvable extension." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 265-276. <http://eudml.org/doc/275102>.
@article{Pál2013,
author = {Pál, Ambrus},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {local field; abelian variety; semi-stable reduction},
language = {eng},
pages = {265-276},
publisher = {Seminario Matematico of the University of Padua},
title = {Curves which do not become semi-stable after any solvable extension},
url = {http://eudml.org/doc/275102},
volume = {129},
year = {2013},
}
TY - JOUR
AU - Pál, Ambrus
TI - Curves which do not become semi-stable after any solvable extension
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 265
EP - 276
LA - eng
KW - local field; abelian variety; semi-stable reduction
UR - http://eudml.org/doc/275102
ER -
References
top- [1] P. Deligne - D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Études Sci.36 (1969), pp. 75–109. Zbl0181.48803MR262240
- [2] L. Gerritzen, Über Endomorphismen nichtarchimedischer holomorpher Tori, Invent. Math.11 (1970), pp. 27–36. MR286799
- [3] L. Gerritzen, On non-archimedean representations of abelian varieties, Math. Ann.196 (1972), pp. 323–346 Zbl0255.14013MR308132
- [4] A. Grothendieck - M. Raynaud, Modèles de Néron et monodromie, Groupes de monodromie en Géometrie Algebrique, I, II, Lecture Notes in Math. 288 (Springer, 1972), pp. 313–523. MR354656
- [5] D. Harbater, Mock covers and Galois extensions, J. Algebra, 91 (1984), pp. 281–293. Zbl0559.14021MR769574
- [6] Gy. Károlyi - A. Pál, The cyclomatic number of connected graphs without solvable orbits, to appear J. Ramanujan Math. Soc. (2012). MR2977358
- [7] W. L ü tkebohmert, Formal-algebraic and rigid-analytic geometry, Math. Ann. 286 (1990), pp. 341–371. Zbl0716.32022MR1032938
- [8] J. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) (Springer, New York ,1986), pp. 167–212. MR861976
- [9] A. Pál, Solvable points on projective algebraic curves, Canad. J. Math.56 (2004), pp. 612–637. Zbl1066.14032MR2057289
- [10] A. Pál, Solvable points on genus one curves over local fields, Journal of the Institute of Mathematics of Jussieu (2012).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.