Ostrowski type inequalities related to the generalized Baouendi-Grushin vector fields

Jingbo Dou; Yazhou Han

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 225-244
  • ISSN: 0041-8994

How to cite

top

Dou, Jingbo, and Han, Yazhou. "Ostrowski type inequalities related to the generalized Baouendi-Grushin vector fields." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 225-244. <http://eudml.org/doc/275110>.

@article{Dou2013,
author = {Dou, Jingbo, Han, Yazhou},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {generalized Baouendi-Grushin vector fields; representation formula; Ostrowski type inequality; Hardy inequality},
language = {eng},
pages = {225-244},
publisher = {Seminario Matematico of the University of Padua},
title = {Ostrowski type inequalities related to the generalized Baouendi-Grushin vector fields},
url = {http://eudml.org/doc/275110},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Dou, Jingbo
AU - Han, Yazhou
TI - Ostrowski type inequalities related to the generalized Baouendi-Grushin vector fields
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 225
EP - 244
LA - eng
KW - generalized Baouendi-Grushin vector fields; representation formula; Ostrowski type inequality; Hardy inequality
UR - http://eudml.org/doc/275110
ER -

References

top
  1. [1] Adimurthi, Hardy-SobolevAdimurthi, Hardy-Sobolev inequality in H 1 ( Ω ) and its applications, Commun. Contemp. Math., 4 (2002), pp. 409–434. MR1918752
  2. [2] Adimurthi - M. Esteban, An improved Hardy-Sobolev inequality in W 1 , p ( Ω ) and its application to Schrodinger operator, NoDEA Nonl. Diff. Equa. Appl., 12 (2005), pp. 243–263. MR2184082
  3. [3] G. A. Anastassiou, Quantitative Approximations, Chapman and Hall/CRC, Boca Raton/New York, 2001. MR1791688
  4. [4] G. A. Anastassiou - J. A. Goldstein, Ostrowski type inequalities over Euclidean domains. Rend. Linc. Matem. Appl., 18 (2007), pp. 305–310. Zbl1142.26011MR2318823
  5. [5] G. A. Anastassiou - J. A. Goldstein, Higher order Ostrowski type inequalities over Euclidean domains, J. Math. Anal. Appl., 337 (2008), pp. 962–968. Zbl1144.26024MR2386345
  6. [6] L. Caffarelli - L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eqs., 32 (2007), pp. 1245–1260. Zbl1143.26002MR2354493
  7. [7] W. Cohn - G. Lu, Best constants for Moser-Trudinger inequalities on the Heisenberg group, India. Univ. Math. J., 50 (2001), pp. 1567–1591. Zbl1019.43009MR1889071
  8. [8] L. D'Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc., 132 (2004), pp. 725–734. Zbl1049.35077MR2019949
  9. [9] L. D'Ambrosio, Hardy type inequalities related to second order degenerate differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), pp. 451–486. Zbl1170.35372MR2185865
  10. [10] L. D'Ambrosio - S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Diff. Eqs., 193 (2003), pp. 511–541. Zbl1040.35012MR1998967
  11. [11] J. Dou - G. Guo - P. Niu, Hardy inequalities with remainder terms for the generalized Baouendi-Grushin vector fields, Math. Ineq. Appl., 13 (2010), pp. 555–570. Zbl1190.26008MR2662838
  12. [12] Y. Dong - G. Lu - L. Sun, Global Poincaré Inequalities on the Heisenberg Group and Applications, Acta Mathematica Sinica, English Series., 23 (2007), pp. 735–744. Zbl1131.46024MR2308108
  13. [13] B. Franchi - E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), pp. 523–541. Zbl0552.35032MR753153
  14. [14] G. B. Folland - E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton, NJ, 1982. Zbl0508.42025MR657581
  15. [15] B. Franchi - E. Lanconelli, An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality, Comm. Part. Diff. Eqs., 9 (1984), pp. 1237–1264. Zbl0589.46023MR764663
  16. [16] B. Lian - Q. Yang, Ostrowski type inequalities on H-type groups, J. Math. Anal. Appl., 365 (2010), pp. 158–166. Zbl1184.26022MR2585086
  17. [17] Z. Liu, Some Ostrowski type inequalities, Math. Comp. Model., 48 (2008), pp. 949–960. Zbl1156.26305MR2451127
  18. [18] H. Liu - J. Luan, Ostrowski type inequalities in the Grushin plane, J. Ineq. Appl. 2010, Article ID 987484, pp. 1–9. Zbl1185.26045MR2607941
  19. [19] P. Niu - J. Dou - H. Zhang, Nonexistence of weak solutions for the p-degenerate subelliptic inequalities constructed by the generalized Baouendi-Grushin vector fields, Georgian Math. J., 12 (2005), pp. 723–738. Zbl1099.35184MR2197194
  20. [20] P. Niu - Y. Ou - J. Han, Several Hardy type inequalities with weights related to generalized greiner operator, Canad. Math. Bull., 53 (2010), pp. 153–162. Zbl1183.35007MR2583221
  21. [21] A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv., 10 (1938), pp. 226–227. Zbl0018.25105MR1509574
  22. [22] M. Wang - X. Zhao, Ostrowski type inequalities for higher-order derivatives, J. Ineq. Appl. 2009, Article ID 162689, pp. 1–8. Zbl1175.26052MR2534573
  23. [23] M. Zhu - Z. Wang, Hardy inequalities with boundary terms, Electron. J. Diff. Eqs., No. 43 (2003), 8 pp. MR1971109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.