Le théorème de Schanuel pour un corps non commutatif

Gaël Rémond; Christine Zehrt-Liebendörfer

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 130, page 221-282
  • ISSN: 0041-8994

How to cite

top

Rémond, Gaël, and Zehrt-Liebendörfer, Christine. "Le théorème de Schanuel pour un corps non commutatif." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 221-282. <http://eudml.org/doc/275116>.

@article{Rémond2013,
author = {Rémond, Gaël, Zehrt-Liebendörfer, Christine},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {height; non-commutative field; Scanuel theorem; maximal order; anti-involution},
language = {fre},
pages = {221-282},
publisher = {Seminario Matematico of the University of Padua},
title = {Le théorème de Schanuel pour un corps non commutatif},
url = {http://eudml.org/doc/275116},
volume = {130},
year = {2013},
}

TY - JOUR
AU - Rémond, Gaël
AU - Zehrt-Liebendörfer, Christine
TI - Le théorème de Schanuel pour un corps non commutatif
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 130
SP - 221
EP - 282
LA - fre
KW - height; non-commutative field; Scanuel theorem; maximal order; anti-involution
UR - http://eudml.org/doc/275116
ER -

References

top
  1. [B] T. Borek, Arakelov theory of noncommutative arithmetic curves. J. Number Theory, 131 (2011), pp. 212–227. Zbl1213.14008MR2736852
  2. [Ca] J. W. S. Cassels, An introduction to the geometry of numbers. Springer, Berlin, 1959. 
  3. [Ch] H. Chaix, Démonstration élémentaire d'un théoréme de Van der Corput. C. R. A. S.275 (1972), pp. 883–885. Zbl0244.10025MR311608
  4. [CG] C. Christensen - W. Gubler, Der relative Satz von Schanuel. Manuscripta Math, 126 (2008), pp. 505–525. Zbl1155.11034MR2425438
  5. [Da] H. Davenport, On a principle of Lipschitz. J. London Math. Soc.26 (1951), pp. 179–183. Zbl0042.27504MR43821
  6. [De] M. Deuring, Algebren. Springer, Berlin, 1968. MR228526
  7. [FMT] J. Franke - Y. Manin - Y. Tschinkel, Rational points of bounded height on Fano varieties. Invent. Math. 95 (1989), pp. 421–435. Erratum c;ibid. 102 (1990), p. 463. Zbl0674.14012MR974910
  8. [FP] D. Farenick - B. Pidkowich, The spectral theorem in quaternions. Lin. Alg. Appl.371 (2003), pp. 75–102. Zbl1030.15015MR1997364
  9. [G] C. Gasbarri, On the number of points of bounded height on arithmetic projective spaces. Manuscripta Math.98 (1999), pp. 453–475. Zbl0991.11036MR1689992
  10. [J] N. Jacobson, Basic Algebra I. Freeman, San Francisco, 1974. Zbl0284.16001MR356989
  11. [La] S. Lang, Algebraic number theory. Addison-Wesley, Reading, Mass. 1970. MR282947
  12. [Le] A. Leutbecher, Zahlentheorie. Springer, Berlin, 1996. 
  13. [LR] C. Liebendörfer - G. Rémond, Hauteurs de sous-espaces sur les corps non commutatifs. Math. Z.255 (2007), pp. 549–577. MR2270288
  14. [MV] D. Masser - J. Vaaler, Counting algebraic numbers with large height II. Trans. Amer. Math. Soc.359 (2007), pp. 427–445. Zbl1215.11100MR2247898
  15. [N] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Springer, Berlin, 1990. Zbl0717.11045MR1055830
  16. [P] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J.79 (1995), pp. 101–218. MR1340296
  17. [R] I. Reiner, Maximal orders. Academic Press, London, 1975. Zbl0305.16001MR1972204
  18. [Scha] S. H. Schanuel, Heights in number fields. Bull. Soc. Math. Fr.107 (1979), pp. 433–449. Zbl0428.12009MR557080
  19. [Schm] W. Schmidt, The distribution of sublattices of m . Monatsh. Math.125 (1998), pp. 37–81. Zbl0913.11028MR1485976
  20. [St] R. P. Stanley, Enumerative Combinatorics. Volume 1, Cambridge University Press, 1997. MR1442260
  21. [T1] J. L. Thunder, An asymptotic estimate for heights of algebraic subspaces. Trans. Amer. Math. Soc.331 (1992), pp. 395–424. Zbl0773.11041MR1072102
  22. [T2] J. L. Thunder, The number of solutions of bounded height to a system of linear equations. J. Number Theory.43 (1993), pp. 228–250. Zbl0773.11022MR1207503
  23. [V] P. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arithm.74 (1996), pp. 81–95. Zbl0838.11065MR1367580
  24. [W] M. Widmer, Counting primitive points of bounded height. Trans. Amer. Math. Soc.362 (2010), pp. 4793–4829. Zbl1270.11064MR2645051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.