Le théorème de Schanuel pour un corps non commutatif
Gaël Rémond; Christine Zehrt-Liebendörfer
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 130, page 221-282
- ISSN: 0041-8994
Access Full Article
topHow to cite
topRémond, Gaël, and Zehrt-Liebendörfer, Christine. "Le théorème de Schanuel pour un corps non commutatif." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 221-282. <http://eudml.org/doc/275116>.
@article{Rémond2013,
author = {Rémond, Gaël, Zehrt-Liebendörfer, Christine},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {height; non-commutative field; Scanuel theorem; maximal order; anti-involution},
language = {fre},
pages = {221-282},
publisher = {Seminario Matematico of the University of Padua},
title = {Le théorème de Schanuel pour un corps non commutatif},
url = {http://eudml.org/doc/275116},
volume = {130},
year = {2013},
}
TY - JOUR
AU - Rémond, Gaël
AU - Zehrt-Liebendörfer, Christine
TI - Le théorème de Schanuel pour un corps non commutatif
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 130
SP - 221
EP - 282
LA - fre
KW - height; non-commutative field; Scanuel theorem; maximal order; anti-involution
UR - http://eudml.org/doc/275116
ER -
References
top- [B] T. Borek, Arakelov theory of noncommutative arithmetic curves. J. Number Theory, 131 (2011), pp. 212–227. Zbl1213.14008MR2736852
- [Ca] J. W. S. Cassels, An introduction to the geometry of numbers. Springer, Berlin, 1959.
- [Ch] H. Chaix, Démonstration élémentaire d'un théoréme de Van der Corput. C. R. A. S.275 (1972), pp. 883–885. Zbl0244.10025MR311608
- [CG] C. Christensen - W. Gubler, Der relative Satz von Schanuel. Manuscripta Math, 126 (2008), pp. 505–525. Zbl1155.11034MR2425438
- [Da] H. Davenport, On a principle of Lipschitz. J. London Math. Soc.26 (1951), pp. 179–183. Zbl0042.27504MR43821
- [De] M. Deuring, Algebren. Springer, Berlin, 1968. MR228526
- [FMT] J. Franke - Y. Manin - Y. Tschinkel, Rational points of bounded height on Fano varieties. Invent. Math. 95 (1989), pp. 421–435. Erratum c;ibid. 102 (1990), p. 463. Zbl0674.14012MR974910
- [FP] D. Farenick - B. Pidkowich, The spectral theorem in quaternions. Lin. Alg. Appl.371 (2003), pp. 75–102. Zbl1030.15015MR1997364
- [G] C. Gasbarri, On the number of points of bounded height on arithmetic projective spaces. Manuscripta Math.98 (1999), pp. 453–475. Zbl0991.11036MR1689992
- [J] N. Jacobson, Basic Algebra I. Freeman, San Francisco, 1974. Zbl0284.16001MR356989
- [La] S. Lang, Algebraic number theory. Addison-Wesley, Reading, Mass. 1970. MR282947
- [Le] A. Leutbecher, Zahlentheorie. Springer, Berlin, 1996.
- [LR] C. Liebendörfer - G. Rémond, Hauteurs de sous-espaces sur les corps non commutatifs. Math. Z.255 (2007), pp. 549–577. MR2270288
- [MV] D. Masser - J. Vaaler, Counting algebraic numbers with large height II. Trans. Amer. Math. Soc.359 (2007), pp. 427–445. Zbl1215.11100MR2247898
- [N] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Springer, Berlin, 1990. Zbl0717.11045MR1055830
- [P] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J.79 (1995), pp. 101–218. MR1340296
- [R] I. Reiner, Maximal orders. Academic Press, London, 1975. Zbl0305.16001MR1972204
- [Scha] S. H. Schanuel, Heights in number fields. Bull. Soc. Math. Fr.107 (1979), pp. 433–449. Zbl0428.12009MR557080
- [Schm] W. Schmidt, The distribution of sublattices of . Monatsh. Math.125 (1998), pp. 37–81. Zbl0913.11028MR1485976
- [St] R. P. Stanley, Enumerative Combinatorics. Volume 1, Cambridge University Press, 1997. MR1442260
- [T1] J. L. Thunder, An asymptotic estimate for heights of algebraic subspaces. Trans. Amer. Math. Soc.331 (1992), pp. 395–424. Zbl0773.11041MR1072102
- [T2] J. L. Thunder, The number of solutions of bounded height to a system of linear equations. J. Number Theory.43 (1993), pp. 228–250. Zbl0773.11022MR1207503
- [V] P. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arithm.74 (1996), pp. 81–95. Zbl0838.11065MR1367580
- [W] M. Widmer, Counting primitive points of bounded height. Trans. Amer. Math. Soc.362 (2010), pp. 4793–4829. Zbl1270.11064MR2645051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.