Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties

Jean-Benoît Bost; Gerard Freixas i Montplet

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 128, page 55-90
  • ISSN: 0041-8994

How to cite

top

Bost, Jean-Benoît, and Freixas i Montplet, Gerard. "Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 55-90. <http://eudml.org/doc/275125>.

@article{Bost2012,
author = {Bost, Jean-Benoît, Freixas i Montplet, Gerard},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Tate conjecture; Zarhin's trick; Barsotti-Tate groups; heights of cycles},
language = {eng},
pages = {55-90},
publisher = {Seminario Matematico of the University of Padua},
title = {Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties},
url = {http://eudml.org/doc/275125},
volume = {128},
year = {2012},
}

TY - JOUR
AU - Bost, Jean-Benoît
AU - Freixas i Montplet, Gerard
TI - Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 55
EP - 90
LA - eng
KW - Tate conjecture; Zarhin's trick; Barsotti-Tate groups; heights of cycles
UR - http://eudml.org/doc/275125
ER -

References

top
  1. [1] A. Abbes, Hauteurs et discrétude, Sém. Bourbaki, Exposé 825, Astérisque 245, pp. 141–166. Zbl1014.11042MR1627110
  2. [2] P. Autissier, Points entiers sur les surfaces arithmétiques, J. Reine Angew. Math.531 (2001), pp. 201–235. Zbl1007.11041MR1810122
  3. [3] P. Autissier, Hauteur de Faltings et hauteur de Néron-Tate du diviseur thêta, Compos. Math.142 (2006), pp. 1451–1458. Zbl1110.14022MR2278754
  4. [4] J.-B. Bost, Letter to Ulf Kühn. 
  5. [5] J.-B. Bost - H. Gillet - C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc.7 (1994), pp. 903–1027. Zbl0973.14013MR1260106
  6. [6] J. I. Burgos - J. Kramer - U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu6 (2007), pp. 1–172. Zbl1115.14013MR2285241
  7. [7] J. I. Burgos - J. Kramer - U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Documenta Math.10 (2005), pp. 619–716. Zbl1080.14028MR2218402
  8. [8] P. Deligne, Théorie de Hodge. II, Institut des Hautes É tudes Scientifiques. Publications Mathématiques, 40 (1971), pp. 5–57. Zbl0219.14007MR498551
  9. [9] P. Deligne - M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math. 349 (Springer, 1973), pp. 143–316. Zbl0281.14010MR337993
  10. [10] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math.92 (1988), pp. 73–90. Zbl0628.10029MR931205
  11. [11] G. Faltings, Arakelov's theorem for abelian varieties, Invent. Math.73 (1983), pp. 337–347. Zbl0588.14025MR718934
  12. [12] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), pp. 349–366. Zbl0588.14026MR718935
  13. [13] G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic Geometry (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, 1986, pp. 9–27. Zbl0602.14044MR861971
  14. [14] G. Faltings - C.-L. Chai, Degeneration of abelian varieties, Springer-Verlag, Berlin, 1990. Zbl0744.14031MR1083353
  15. [15] G. Faltings - G. Wüstholz et al., Rational points, Aspects of Mathematics, Vol. E6, Vieweg, 1984. Zbl0588.14027MR766568
  16. [16] G. Freixas i Montplet, Heights and metrics with logarithmic singularities, J. Reine Angew. Math. 627 (2009), pp. 97–153. Zbl1195.14033MR2494930
  17. [17] A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique, III, Sém. Bourbaki, Exposé 212, 1961. Zbl0238.14014
  18. [18] A. J. de Jong - F. Oort, On extending families of curves, J. Alg. Geom.6 (1997), pp. 545–562. Zbl0922.14017MR1487226
  19. [19] H. Ikoma, The Faltings-Moriwaki modular height and isogenies of elliptic curves, J. Math. Kyoto. Univ.48 (2008), pp. 661–682. Zbl1260.11047MR2511056
  20. [20] J. Jost - K. Zuo, Arakelov type inequalities for Hodge bundles over algebraic varieties, Part I: Hodge bundles over algebraic curves, J. Alg. Geom. 11 (2002), pp. 535–546. Zbl1100.14027MR1894937
  21. [21] V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France, 80, SMF (2000). Zbl0963.14009
  22. [22] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985). Zbl0595.14032MR797982
  23. [23] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem. I, Ann. Scient. É c. Norm. Sup. 22 (1989), pp. 161–179 Zbl0704.14014MR1005158
  24. [24] A. Moriwaki, The modular height of an abelian variety and its finiteness property, Adv. Stud. Pure Math.45 (2006), pp. 157–187. Zbl1163.14304MR2310249
  25. [25] D. Mumford, Hirzebruch's Proportionality Theorem in the Non-Compact Case, Invent. Math.42 (1977), pp. 239–272. Zbl0365.14012MR471627
  26. [26] H. Randriambololona, Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents, J. Reine angew. Math. 590 (2006), pp. 67–88. Zbl1097.14020MR2208129
  27. [27] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics 119, Springer-Verlag, 1970. Zbl0195.22701MR260758
  28. [28] I. Reiner, Maximal Orders, London Math. Soc. Monograph New Series, Oxford University Press, New York, 2003. Zbl1024.16008MR1972204
  29. [29] R. Rumely, Arithmetic over the ring of all algebraic integers, J. Reine. angew. Math. 368 (1986), pp. 127–133. Zbl0581.14014MR850618
  30. [30] L. Szpiro, Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque 127 (1985). Zbl0588.14028MR801916
  31. [31] L. Szpiro - E. Ullmo - S. Zhang, Equirépartition des petits points, Invent. Math.127 (1997), pp. 337–347. Zbl0991.11035MR1427622
  32. [32] J. Tate, Endomorphisms of Abelian Varieties over Finite Fields, Invent. Math.2 (1966), pp. 134–144. Zbl0147.20303MR206004
  33. [33] J. Tate, p-divisible groups, in Proceedings of a Conference on Local Fields, Driebergen, Springer-Verlag, 1967. Zbl0157.27601MR231827
  34. [34] Y. G. Zarhin, Abelian varieties in characteristic p , Math. Notes of the Academy of Sciences of the USSR, 19 (1976), pp. 240–244. Zbl0342.14011MR422287
  35. [35] Y. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Math. USSR Izvestija, 9, No. 2 (1975), pp. 255–260. Zbl0345.14014
  36. [36] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc.8 (1995), pp. 187–221. Zbl0861.14018MR1254133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.