Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties
Jean-Benoît Bost; Gerard Freixas i Montplet
Rendiconti del Seminario Matematico della Università di Padova (2012)
- Volume: 128, page 55-90
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBost, Jean-Benoît, and Freixas i Montplet, Gerard. "Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 55-90. <http://eudml.org/doc/275125>.
@article{Bost2012,
author = {Bost, Jean-Benoît, Freixas i Montplet, Gerard},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Tate conjecture; Zarhin's trick; Barsotti-Tate groups; heights of cycles},
language = {eng},
pages = {55-90},
publisher = {Seminario Matematico of the University of Padua},
title = {Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties},
url = {http://eudml.org/doc/275125},
volume = {128},
year = {2012},
}
TY - JOUR
AU - Bost, Jean-Benoît
AU - Freixas i Montplet, Gerard
TI - Semi-abelian Schemes and Heights of Cycles in Moduli Spaces of abelian Varieties
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 55
EP - 90
LA - eng
KW - Tate conjecture; Zarhin's trick; Barsotti-Tate groups; heights of cycles
UR - http://eudml.org/doc/275125
ER -
References
top- [1] A. Abbes, Hauteurs et discrétude, Sém. Bourbaki, Exposé 825, Astérisque 245, pp. 141–166. Zbl1014.11042MR1627110
- [2] P. Autissier, Points entiers sur les surfaces arithmétiques, J. Reine Angew. Math.531 (2001), pp. 201–235. Zbl1007.11041MR1810122
- [3] P. Autissier, Hauteur de Faltings et hauteur de Néron-Tate du diviseur thêta, Compos. Math.142 (2006), pp. 1451–1458. Zbl1110.14022MR2278754
- [4] J.-B. Bost, Letter to Ulf Kühn.
- [5] J.-B. Bost - H. Gillet - C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc.7 (1994), pp. 903–1027. Zbl0973.14013MR1260106
- [6] J. I. Burgos - J. Kramer - U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu6 (2007), pp. 1–172. Zbl1115.14013MR2285241
- [7] J. I. Burgos - J. Kramer - U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Documenta Math.10 (2005), pp. 619–716. Zbl1080.14028MR2218402
- [8] P. Deligne, Théorie de Hodge. II, Institut des Hautes É tudes Scientifiques. Publications Mathématiques, 40 (1971), pp. 5–57. Zbl0219.14007MR498551
- [9] P. Deligne - M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math. 349 (Springer, 1973), pp. 143–316. Zbl0281.14010MR337993
- [10] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math.92 (1988), pp. 73–90. Zbl0628.10029MR931205
- [11] G. Faltings, Arakelov's theorem for abelian varieties, Invent. Math.73 (1983), pp. 337–347. Zbl0588.14025MR718934
- [12] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), pp. 349–366. Zbl0588.14026MR718935
- [13] G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic Geometry (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, 1986, pp. 9–27. Zbl0602.14044MR861971
- [14] G. Faltings - C.-L. Chai, Degeneration of abelian varieties, Springer-Verlag, Berlin, 1990. Zbl0744.14031MR1083353
- [15] G. Faltings - G. Wüstholz et al., Rational points, Aspects of Mathematics, Vol. E6, Vieweg, 1984. Zbl0588.14027MR766568
- [16] G. Freixas i Montplet, Heights and metrics with logarithmic singularities, J. Reine Angew. Math. 627 (2009), pp. 97–153. Zbl1195.14033MR2494930
- [17] A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique, III, Sém. Bourbaki, Exposé 212, 1961. Zbl0238.14014
- [18] A. J. de Jong - F. Oort, On extending families of curves, J. Alg. Geom.6 (1997), pp. 545–562. Zbl0922.14017MR1487226
- [19] H. Ikoma, The Faltings-Moriwaki modular height and isogenies of elliptic curves, J. Math. Kyoto. Univ.48 (2008), pp. 661–682. Zbl1260.11047MR2511056
- [20] J. Jost - K. Zuo, Arakelov type inequalities for Hodge bundles over algebraic varieties, Part I: Hodge bundles over algebraic curves, J. Alg. Geom. 11 (2002), pp. 535–546. Zbl1100.14027MR1894937
- [21] V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France, 80, SMF (2000). Zbl0963.14009
- [22] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985). Zbl0595.14032MR797982
- [23] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem. I, Ann. Scient. É c. Norm. Sup. 22 (1989), pp. 161–179 Zbl0704.14014MR1005158
- [24] A. Moriwaki, The modular height of an abelian variety and its finiteness property, Adv. Stud. Pure Math.45 (2006), pp. 157–187. Zbl1163.14304MR2310249
- [25] D. Mumford, Hirzebruch's Proportionality Theorem in the Non-Compact Case, Invent. Math.42 (1977), pp. 239–272. Zbl0365.14012MR471627
- [26] H. Randriambololona, Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents, J. Reine angew. Math. 590 (2006), pp. 67–88. Zbl1097.14020MR2208129
- [27] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics 119, Springer-Verlag, 1970. Zbl0195.22701MR260758
- [28] I. Reiner, Maximal Orders, London Math. Soc. Monograph New Series, Oxford University Press, New York, 2003. Zbl1024.16008MR1972204
- [29] R. Rumely, Arithmetic over the ring of all algebraic integers, J. Reine. angew. Math. 368 (1986), pp. 127–133. Zbl0581.14014MR850618
- [30] L. Szpiro, Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque 127 (1985). Zbl0588.14028MR801916
- [31] L. Szpiro - E. Ullmo - S. Zhang, Equirépartition des petits points, Invent. Math.127 (1997), pp. 337–347. Zbl0991.11035MR1427622
- [32] J. Tate, Endomorphisms of Abelian Varieties over Finite Fields, Invent. Math.2 (1966), pp. 134–144. Zbl0147.20303MR206004
- [33] J. Tate, p-divisible groups, in Proceedings of a Conference on Local Fields, Driebergen, Springer-Verlag, 1967. Zbl0157.27601MR231827
- [34] Y. G. Zarhin, Abelian varieties in characteristic , Math. Notes of the Academy of Sciences of the USSR, 19 (1976), pp. 240–244. Zbl0342.14011MR422287
- [35] Y. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Math. USSR Izvestija, 9, No. 2 (1975), pp. 255–260. Zbl0345.14014
- [36] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc.8 (1995), pp. 187–221. Zbl0861.14018MR1254133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.