Horizontal Factorizations of Certain Hasse-Weil Zeta Functions - a Remark on a Paper by Taniyama
Christopher Deninger; Dimitri Wegner
Rendiconti del Seminario Matematico della Università di Padova (2012)
- Volume: 128, page 91-108
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDeninger, Christopher, and Wegner, Dimitri. "Horizontal Factorizations of Certain Hasse-Weil Zeta Functions - a Remark on a Paper by Taniyama." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 91-108. <http://eudml.org/doc/275130>.
@article{Deninger2012,
author = {Deninger, Christopher, Wegner, Dimitri},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Hasse-Weil zeta function; Abelian scheme; algebraic torus; -adic representations; Artin -series},
language = {eng},
pages = {91-108},
publisher = {Seminario Matematico of the University of Padua},
title = {Horizontal Factorizations of Certain Hasse-Weil Zeta Functions - a Remark on a Paper by Taniyama},
url = {http://eudml.org/doc/275130},
volume = {128},
year = {2012},
}
TY - JOUR
AU - Deninger, Christopher
AU - Wegner, Dimitri
TI - Horizontal Factorizations of Certain Hasse-Weil Zeta Functions - a Remark on a Paper by Taniyama
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 91
EP - 108
LA - eng
KW - Hasse-Weil zeta function; Abelian scheme; algebraic torus; -adic representations; Artin -series
UR - http://eudml.org/doc/275130
ER -
References
top- [A] Tom M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc.24 (1970), pp. 457–462. Zbl0188.34002MR251010
- [C] Brian Conrad, A modern proof of Chevalley's theorem on algebraic groups, J. Ramanujan Math. Soc. 17 (1) (2002), pp. 1–18. Zbl1007.14005MR1906417
- [DG] Michel Demazure - Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970. Avec un appendice Corps de classes local par Michiel Hazewinkel. Zbl0203.23401MR302656
- [EGAIV3] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math., 28 (1966), p. 255. Zbl0144.19904MR217086
- [JR] Kirti Joshi - Ravi Raghunathan, Infinite product identities for -functions, Illinois J. Math., 49 (3) (2005), pp. 885–891 (electronic). Zbl1110.11030MR2210265
- [JY] Kirti Joshi - C. S. Yogananda, A remark on product of Dirichlet -functions, Acta Arith., 91 (4) (1999), pp. 325–327. Zbl0959.11037MR1736015
- [KL] Henry H. Kim - Kyu-Hwan Lee, Representation theory of -adic groups and canonical bases, Adv. Math., 227 (2) (2011), pp. 945–961. Zbl1228.22011MR2793028
- [L] Qing Liu, Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics, Oxford University Press (Oxford, 2002). Translated from the French by Reinie Erné, Oxford Science Publications. Zbl0996.14005MR1917232
- [N] Jürgen Neukirch, Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 1999) Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder. Zbl0956.11021MR1697859
- [S] Jean-Pierre Serre, Abelian -adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. W. A. Benjamin, Inc., New York-Amsterdam, 1968. Zbl0186.25701MR263823
- [T] Yutaka Taniyama, -functions of number fields and zeta functions of abelian varieties., J. Math. Soc. Japan, 9 (1957), pp. 330–366. Zbl0213.22803MR95161
- [Wa] William C. Waterhouse, Introduction to affine group schemes, volume 66 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1979). Zbl0442.14017MR547117
- [We] André Weil, Variétés abéliennes et courbes algébriques, Actualités Sci. Ind., no. 1064 = Publ. Inst. Math. Univ. Strasbourg 8 (1946), Hermann & Cie., Paris, 1948. Zbl0037.16202MR29522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.