Uniform Sheaves and Differential Equations

Yves André

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 128, page 345-372
  • ISSN: 0041-8994

How to cite

top

André, Yves. "Uniform Sheaves and Differential Equations." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 345-372. <http://eudml.org/doc/275134>.

@article{André2012,
author = {André, Yves},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {345-372},
publisher = {Seminario Matematico of the University of Padua},
title = {Uniform Sheaves and Differential Equations},
url = {http://eudml.org/doc/275134},
volume = {128},
year = {2012},
}

TY - JOUR
AU - André, Yves
TI - Uniform Sheaves and Differential Equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 345
EP - 372
LA - eng
UR - http://eudml.org/doc/275134
ER -

References

top
  1. [1] Y. André, Filtrations de Hasse-Arf et monodomie p -adique, Invent. Math. 148 , no. 2 (2002), pp. 285–317. Zbl1081.12003MR1906151
  2. [2] Y. André, Galois representations, differential equations and q -difference equations: sketch of a p -adic unification, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I. Astérisque 296 (2004), pp. 43–53. Zbl1074.12005MR2135684
  3. [3] Y. André - F. Baldassarri, De Rham cohomology of differential modules on algebraic varieties, Progress in Mathematics 189. Birkhäuser Verlag, Basel (2001). Zbl0995.14003MR1807281
  4. [4] M. Audin, Henri Cartan et André Weil. Du XXe siècle et de la topologie, journées X-UPS 2012, Ecole Polytechnique, to appear. 
  5. [5] M. Baker, Uniform structures and Berkovich spaces, unpublished preprint (2006), available at http://people.math.gatech.edu/ mbaker/papers.html. 
  6. [6] F. Baldassarri, Differential modules and singular points of p-adic differential equations, Adv. in Math. 44 , no. 2 (1982), pp. 155–179. Zbl0493.12030MR658539
  7. [7] F. Baldassarri, Comparaison entre la cohomologie algébrique et la cohomologie p-adique rigide à coefficients dans un module différentiel. I. Cas des courbes, Invent. Math. 87 , no. 1 (1987), pp. 83–99. Zbl0586.14009MR862713
  8. [8] F. Baldassarri, Connexions sur les courbes p -adiques: existence d’un modèle “clean”, finitude de la cohomologie et formules de Euler-Poincaré, talk at the Strasbourg conference, 16/4/2012. 
  9. [9] F. Baldassarri - B. Chiarellotto, Algebraic versus rigid cohomology with logarithmic coefficients, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), pp. 11–50, Perspect. Math., 15 , Academic Press, San Diego, CA (1994). Zbl0833.14010MR1307391
  10. [10] H. Bentley - H. Herrlich - M. Husek, The historical development of uniform, proximal and nearness concepts in Topology, Handbook of the History of General Topology, Vol. 2, C. Aull and R. Lowen eds., Kluwer, Dordrecht (2001), pp. 577–629. Zbl0936.54028MR1795163
  11. [11] V. Berkovich, Non-Archimedean analytic geometry: first steps, p -adic geometry, Univ. Lecture Ser., 45, Amer. Math. Soc., Providence, RI, 2008. Zbl1153.14019MR2482344
  12. [12] V. Berkovich, Integration of one-forms on p -adic spaces, Annals of Mathematics Studies, 162 . Princeton University Press (2007). Zbl1161.14001MR2263704
  13. [13] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, preprint Rennes (1996). 
  14. [14] J. Bochnak - M. Coste - M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik, Springer (1987). Zbl0633.14016MR949442
  15. [15] S. Bosch - U. Güntzer - R. Remmert, Non-archimedean analysis, Grundlehren der math. Wissenschaften 261 , Springer-Verlag (1984). Zbl0539.14017MR746961
  16. [16] N. Bourbaki, Eléments de mathématique. Topologie générale, english translation: Springer (1989). Zbl1107.54001
  17. [17] G. Brümmer, Categorical aspects of the theory of quasi-uniform spaces, Rend. Istit. Mat. Univ. Trieste, Suppl. Vol. XXX (1999), pp. 45–74. Zbl0934.54015MR1718995
  18. [18] G. Châtelet, L'enchantement du virtuel, C. Alunni and C. Paoletti eds., Editions Rue d'Ulm, Paris (2011). 
  19. [19] G. Christol - Z. Mebkhout, Sur le théorème de l’indice des équations différentielles p -adiques IV, Invent. Math.143 (2001), pp. 629–672. Zbl1078.12501MR1817646
  20. [20] R. Crew, F -isocrystals and p -adic representations, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46 Part 2, Amer. Math. Soc., Providence, RI, 1987, pp. 111–138. Zbl0639.14011MR927977
  21. [21] J. Dauns - K. Hofmann, Representations of rings by continuous sections, Memoir Amer. Math. Soc. 83 (1968). Zbl0174.05703MR247487
  22. [22] P. Deligne, Equations différentielles à points singuliers réguliers, Lecture notes in math. 163 , Springer (1970). Zbl0244.14004MR417174
  23. [23] P. Deligne, Lettre à J.-P. Ramis, 7/1/86, Singularités irrégulières, Correspondances et documents, (P. Deligne, B. Malgrange, J.-P. Ramis), Documents math. 5 , Soc. Math. Fr. (2007). Zbl1130.14001MR2387754
  24. [24] L. Di Vizio - J.-P. Ramis - J. Sauloy - C. Zhang, Equations aux q -différences, Gaz. Math. No.96 (2003), pp. 20–49. Zbl1063.39015MR1988639
  25. [25] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), pp. 43–60. Zbl0184.29401MR251026
  26. [26] R. Huber, Etale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30. Friedr. Vieweg, Braunschweig, 1996. Zbl0868.14010MR1734903
  27. [27] R. Huber, Swan representations associated with rigid analytic curves, J. Reine Angew. Math.537 (2001), pp. 165–234. Zbl0979.14012MR1856262
  28. [28] J. Isbell, Uniform spaces, Math. Surveys n 12, A.M.S. Providence (1974). Zbl0124.15601
  29. [29] M. Kashiwara - P. Shapira, Ind-sheaves, Astérisque 271 , Soc. Math. Fr. (2001). Zbl0993.32009MR1827714
  30. [30] K. Kedlaya, Fourier transforms and p -adic “Weil II”, Compos. Math. 142 , no. 6 (2006), pp. 1426–1450. Zbl1119.14014MR2278753
  31. [31] H.-P. Künzi, Nonsymmetric distances and their associated topologies. About the origins of basic ideas in the area of asymmetric topology, Handbook of the History of General Topology, Vol. 3, C. Aull and R. Lowen eds., Kluwer, Dordrecht (2001), pp. 853–968. Zbl1002.54002MR1900267
  32. [32] P. Lambrinos, A note on quasi-uniform continuity, Bull. Austral. Math. Soc.8 (1973), pp. 389–392. Zbl0254.54026MR321017
  33. [33] B. Le Stum, The overconvergent site, Mém. Soc. Math. Fr., 127 (2011). Zbl1246.14028MR2952779
  34. [34] M. Loday-Richaud - G. Pourcin, On index theorems for linear ordinary differential operators, Ann. Inst. Fourier (Grenoble) 47 , no. 5 (1997), pp. 1379–1424. Zbl0901.34012MR1600379
  35. [35] G. Morando, Tempered solutions of -modules on complex curves and formal invariants, Ann. Inst. Fourier Grenoble 59, 4 (2009), pp. 1611–1630. Zbl1218.32015MR2566969
  36. [36] M. Murdeshwar - S. Naimpally, Quasi-uniform topological spaces, Nordhoff (1966). Zbl0139.40501MR211386
  37. [37] R. Meyer, Bornological versus topological analysis in metrizable spaces, Banach algebras and their applications, 249–278, Contemp. Math. 363, Amer. Math. Soc., Providence, RI (2004). Zbl1081.46004MR2097966
  38. [38] S. Naimpally - B. Warrack, Proximity spaces, Cambridge Univ. Press (1970). Zbl1184.54027MR278261
  39. [39] L. Ramero, Local monodromy in non-archimedean analytic geometry, Publ. Math. Inst. Hautes É tudes Sci.102 (2005), pp. 167–280. Zbl1111.14012MR2217053
  40. [40] J.-P. Ramis, Les derniers travaux de Jean Martinet, Annales de l'institut Fourier, 42 , no. 1-2 (1992), pp. 15–47. Zbl0927.01031MR1162556
  41. [41] J. Rivera-Letelier, Notes sur la droite projective de Berkovich, preprint (2006). Available at arxiv:abs/math.MG/0605676. 
  42. [42] J. Roques, Sur les systèmes aux ( q -)différences. Thèse Univ. Toulouse III (2007). 
  43. [43] C. Sabbah, De Rham and Dolbeault cohomology of D-modules (Oberwolfach 2007), lecture notes available at http://www.math.polytechnique.fr/cmat/sabbah/livres.html 
  44. [44] J. Tukey, Convergence and uniformity in topology, Annals of Mathematics Studies, no. 2. Princeton University Press, Princeton, N. J (1940). Zbl0025.09102MR2515JFM66.0961.01
  45. [45] M. van der Put - M. Singer, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328 . Springer-Verlag, Berlin, 2003. Zbl1036.12008MR1960772
  46. [46] L. Waelbroeck, review of Bornologies and functional analysis by H. Hogbe-Nlend (Math. Studies 26, North-Holland), Bull. Amer. Math. Soc. 84 (1978). Zbl0359.46004MR1567102
  47. [47] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Publications de l'Institut de mathématiques de l'Université de Strasbourg, Hermann, Paris (1937). Zbl0019.18604JFM63.0569.04
  48. [SGA 4] M. Artin - A. Grothendieck - J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture notes in math. 269 , 270 , 305 , Springer (1972), pp. 13. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.