Semistable Sheaves and Comparison Isomorphisms in the Semistable Case
Fabrizio Andreatta; Adrian Iovita
Rendiconti del Seminario Matematico della Università di Padova (2012)
- Volume: 128, page 131-286
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAndreatta, Fabrizio, and Iovita, Adrian. "Semistable Sheaves and Comparison Isomorphisms in the Semistable Case." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 131-286. <http://eudml.org/doc/275139>.
@article{Andreatta2012,
author = {Andreatta, Fabrizio, Iovita, Adrian},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {crystalline representation},
language = {eng},
pages = {131-286},
publisher = {Seminario Matematico of the University of Padua},
title = {Semistable Sheaves and Comparison Isomorphisms in the Semistable Case},
url = {http://eudml.org/doc/275139},
volume = {128},
year = {2012},
}
TY - JOUR
AU - Andreatta, Fabrizio
AU - Iovita, Adrian
TI - Semistable Sheaves and Comparison Isomorphisms in the Semistable Case
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 131
EP - 286
LA - eng
KW - crystalline representation
UR - http://eudml.org/doc/275139
ER -
References
top- [AB] F. Andreatta - O. Brinon, Acyclicité géométrique de . To appear in Commentarii Mathematici Helvetici.
- [AI1] F. Andreatta - A. Iovita, Global applications of relative -modules. In Représentations -adiques de groupes -adiques I : représentations galoisiennes et -modules, Astérisque 319 (2008), pp. 339–419. Zbl1163.11051MR2493222
- [Err] F. Andreatta - A. Iovita, Erratum to the articleGlobal applications of relative -modules, I, Astérisque 330, Représentations -adiques de groupes -adiques II: Représentations de et -modules, (2010), pp. 543–554. Zbl1202.11038MR2642412
- [AI2] F. Andreatta - A. Iovita, Comparison Isomorphisms for Smooth Formal Schemes. Journal de l'Institut de Mathématiques de Jussieu, 12 (2013), pp. 77–151. Zbl1281.14013MR3001736
- [Be] P. Berthelot, Cohomologie cristalline des schémas de caractéristique . LNM 407, Springer, Berlin-Heidelberg-New York, 1974. Zbl0298.14012MR384804
- [BO] P. Berthelot - A. Ogus, Notes on crystalline cohomology. Princeton University Press, 1978. Zbl0383.14010MR491705
- [Bre] C. Breuil, Représentations -adiques semi-stables et transversalité de Griffiths. Math. Ann.307 (1997), pp. 191–224. Zbl0883.11049MR1428871
- [Bri] O. Brinon, Représentations -adiques cristallines et de de Rham dans le cas relatif. Mémoires de la SMF, 112 (2008), pp. 158. Zbl1170.14016MR2484979
- [CF] P. Colmez - J.-M. Fontaine, Construction des représentations -adiques semi-stables. Invent. Math.140 (2000), pp. 1–43. Zbl1010.14004MR1779803
- [El] R. Elkik, Solutions d'équations à coefficients dans un anneau hensélien. Ann. Sci. E.N.S.6 (1973), pp. 553–604. Zbl0327.14001MR345966
- [F3] G. Faltings, Almost étale extensions, In Cohomologies -adiques et applications arithmétiques, vol. II. P. Berthelot, J.-M. Fontaine, L. Illusie, K. Kato, M. Rapoport eds. Astérisque, 279 (2002), pp. 185–270. Zbl1027.14011MR1922831
- [Fo] J.-M. Fontaine, Le corps des périodes -adiques. With an appendix by Pierre Colmez. In Périodes -adiques (Bures-sur-Yvette, 1988). Astérisque, 223 (1994), pp. 59–111. Zbl0940.14012MR1293971
- [FdP] J. Fresnel - M. van der Put, Rigid analytic geometry and its applications. Progress in Mathematics, 218, pp. 296. Zbl1096.14014MR2014891
- [SGAI] Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois-Marie 1960–1961 (SGA 1). Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. LNM, 224 (1971). Zbl0234.14002
- [SGAIV] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. LNM, 269 (1972). Zbl0234.00007
- [Ga] O. Gabber, Affine analog of the proper base change theorem. Israel J. of Math.87 (1994), pp. 325–335. Zbl0816.13006MR1286833
- [GR] O. Gabber - L. Ramero, Foundations of p-adic Hodge theory. Available at http://math.univ-lille1.fr/ ramero/.
- [Il] L. Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology. In Cohomologies -adiques et applications arithmtiques, II. Astérisque, 279 (2002), pp. 271–322. Zbl1052.14005MR1922832
- [K1] K. Kato, Semi-stable reduction and -adic étale cohomology. In Périodes -adiques (Bures-sur-Yvette, 1988). Astérisque, 223 (1994), pp. 269–293. Zbl0847.14009MR1293975
- [K2] K. Kato, Logarithmic structures of Fontaine-Illusie, in Proceedings of JAMI conference, (1988), pp. 191–224. Zbl0776.14004MR1463703
- [K3] K. Kato, Toric singularities, Amer. J. Math.116 (1994), pp. 1073–1099. Zbl0832.14002MR1296725
- [Ka] N. Katz, Nilpotent connexions and the monodromy theorem: applications of a result of Turrittin. Publ. Math. IHES39 (1970), pp. 176–232. Zbl0221.14007MR291177
- [Ni] W. Niziol, K-Theory of Log-Schemes I. Documenta Mathematica, 13 (2008), pp. 505–551. Zbl1159.19003MR2452875
- [O] A. Ogus, -Isocrystals and de Rham cohomology II. Convergent isocrystals. Duke Math. J. 51 (1984), pp. 765–850. Zbl0584.14008MR771383
- [Ol] M. Olsson, On Faltings' method of almost étale extensions. In Algebraic geometry–Seattle 2005. Part 2. Proc. Sympos. Pure Math. 80 (2009), pp. 811–936. Zbl1175.14012MR2483956
- [S] M. Saito, Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci.24 (1988), pp. 849–995. Zbl0691.14007MR1000123
- [Sc] P. Scholze, -Adic Hodge theory for rigid analytic varieties, preprint (2012).
- [T1] T. Tsuji, -adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math.137 (1999), pp. 233–411. Zbl0945.14008MR1705837
- [T2] T. Tsuji, Crystalline sheaves and filtered convergent -isocrystals on log schemes. Preprint.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.