Répartition des nombres hautement composés de Ramanujan

Jean-Louis Nicolas

Séminaire de théorie des nombres de Bordeaux (1969-1970)

  • page 1-18

How to cite

top

Nicolas, Jean-Louis. "Répartition des nombres hautement composés de Ramanujan." Séminaire de théorie des nombres de Bordeaux (1969-1970): 1-18. <http://eudml.org/doc/275242>.

@article{Nicolas1969-1970,
author = {Nicolas, Jean-Louis},
journal = {Séminaire de théorie des nombres de Bordeaux},
language = {fre},
pages = {1-18},
publisher = {Laboratoire de théorie des nombres - Université de Bordeaux I},
title = {Répartition des nombres hautement composés de Ramanujan},
url = {http://eudml.org/doc/275242},
year = {1969-1970},
}

TY - JOUR
AU - Nicolas, Jean-Louis
TI - Répartition des nombres hautement composés de Ramanujan
JO - Séminaire de théorie des nombres de Bordeaux
PY - 1969-1970
PB - Laboratoire de théorie des nombres - Université de Bordeaux I
SP - 1
EP - 18
LA - fre
UR - http://eudml.org/doc/275242
ER -

References

top
  1. [1] Alaoglu ( L.) and Erdös ( P.). - On highly composite and similar numbers, Trans. Amer. math. Soc. t. 56, 1944, pp. 448-469. Zbl0061.07903MR11087
  2. [2] Erdös ( P.). - On highly composite numbers. J. London math. Soc. t. 19, 1944, pp. 130-133. Zbl0061.07904MR13381
  3. [3] Feldmann ( N.). - Improved estimate for a linear form of the logarithms of algebraic numbers. Math. Sbornik, t. 77, (119), 1968, n° 3 (en russe) Zbl0235.10018MR232736
  4. Feldmann ( N.). - Improved estimate for a linear form of the logarithms of algebraic numbers. Math U.S.S.R. Sbornik t. 6, 1968, n° 3 - (traduction de l'A.M.S.). 
  5. [4] Ingham ( A.E.). - On the difference of two consecutive primes. Quart. J. Math. Oxford, t. 8, (1937), p. 255. Zbl0017.38904JFM63.0903.04
  6. [5] Landau ( E.). - Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig und Berlin, B. G. Teubner, 1909. JFM40.0232.08
  7. [6] Lang ( S.). - Introduction to Diophantine Approximations. Addison-Wesley, 1966. Zbl0144.04005MR209227
  8. [7] Nicolas ( J.L.). - Ordre maximal d'un élément du groupe des permutations et highly composite numbers. Bull. Soc. Math. France, t. 97 (1969) pp. 129-191. Zbl0184.07202MR254130
  9. [8] Ramanujan ( S.). - Highly composite numbers. - Proc. London math. Soc., Séries 2, t. 14 (1915), pp. 347-400 ; Colleted papers, pp. 78-128. MR2280858JFM45.1248.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.