An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes

Charles-Elie Rabier

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 4, page 755-778
  • ISSN: 0240-2963

Abstract

top
We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval [ 0 , T ] representing a chromosome. The originality is in the fact that some genotypes are missing. We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on [ 0 , T ] and under local alternatives with a QTL at t on [ 0 , T ] . We show that the LRT process is asymptotically the square of a “non-linear interpolated and normalized Gaussian process”. We have an easy formula in order to compute the supremum of the square of this interpolated process. We prove that the threshold is exactly the same as in the classical situation without missing genotypes.

How to cite

top

Rabier, Charles-Elie. "An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 755-778. <http://eudml.org/doc/275282>.

@article{Rabier2014,
abstract = {We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval $[0,T]$ representing a chromosome. The originality is in the fact that some genotypes are missing. We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on $[0,T]$ and under local alternatives with a QTL at $t^\{\star \}$ on $[0,T]$. We show that the LRT process is asymptotically the square of a “non-linear interpolated and normalized Gaussian process”. We have an easy formula in order to compute the supremum of the square of this interpolated process. We prove that the threshold is exactly the same as in the classical situation without missing genotypes.},
author = {Rabier, Charles-Elie},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {4},
pages = {755-778},
publisher = {Université Paul Sabatier, Toulouse},
title = {An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes},
url = {http://eudml.org/doc/275282},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Rabier, Charles-Elie
TI - An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 4
SP - 755
EP - 778
AB - We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval $[0,T]$ representing a chromosome. The originality is in the fact that some genotypes are missing. We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on $[0,T]$ and under local alternatives with a QTL at $t^{\star }$ on $[0,T]$. We show that the LRT process is asymptotically the square of a “non-linear interpolated and normalized Gaussian process”. We have an easy formula in order to compute the supremum of the square of this interpolated process. We prove that the threshold is exactly the same as in the classical situation without missing genotypes.
LA - eng
UR - http://eudml.org/doc/275282
ER -

References

top
  1. Arends (D.), Prins (P.), Broman (K.), Jansen (R.).— Tutorial Multiple QTL Mapping (MQM) Analysis, Technical Report (2010). 
  2. Azaïs (J.M.), Cierco-Ayrolles (C.).— An asymptotic test for quantitative gene detection, Ann. Inst. Henri Poincaré (B), 38, 6, p. 1087-1092 (2002). Zbl1011.62113MR1955355
  3. Azaïs (J.M.), Gassiat (E.), Mercadier (C.).— Asymptotic distribution and local power of the likelihood ratio test for mixtures, Bernoulli, 12(5), p. 775-799 (2006). Zbl1134.62010MR2265342
  4. Azaïs (J.M.), Gassiat (E.), Mercadier (C.).— The likelihood ratio test for general mixture models with possibly structural parameter, ESAIM, 13, p. 301-327 (2009). Zbl1180.62069MR2528086
  5. Azaïs (J.M.), Wschebor (M.).— Level sets and extrema of random processes and fields, Wiley, New-York (2009). Zbl1168.60002MR2478201
  6. Azaïs (J.M.), Delmas (C.), Rabier (C-E.).— 2012. Likelihood Ratio Test process for QTL detection, Statistics, DOI:10.1080/02331888.2012.760093. 
  7. Broman (K.).— Use of hidden Markov models for QTL mapping, Technical Report (2006). 
  8. Chang (M. N.), Wu (R.), Wu (S. S.), Casella (G.).— Score statistics for mapping quantitative trait loci, Statistical Application in Genetics and Molecular Biology, 8(1), 16 (2009). Zbl1276.62062MR2476394
  9. Cierco (C.).— Asymptotic distribution of the maximum likelihood ratio test for gene detection, Statistics, 31, p. 261-285 (1998). Zbl0908.62012MR1718317
  10. Churchill (G.A.), Doerge (R.W.).— Empirical threshold values for quantitative trait mapping, Genetics, 138, p. 963-971 (1994). 
  11. Darvasi (D.,) Soller (M.).— Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus, Theoretical and Applied Genetics, 85, p. 353-359 (1992). 
  12. Davies (R.B.).— Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 64, p. 247-254 (1977). Zbl0362.62026MR501523
  13. Davies (R.B.).— Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 74, p. 33-43 (1987). Zbl0612.62023MR885917
  14. Feingold (E.), Brown (P.O.), Siegmund (D.).— Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent, Am. J. Human. Genet., 53, p. 234-251 (1993). 
  15. Gassiat (E.).— Likelihood ratio inequalities with applications to various mixtures, Ann. Inst. Henri Poincaré (B), 6, p. 897-906 (2002). Zbl1011.62025MR1955343
  16. Genz (A.).— Numerical computation of multivariate normal probabilities, J. Comp. Graph. Stat., p. 141-149 (1992). Zbl1204.62088
  17. Haldane (J.B.S.).— The combination of linkage values and the calculation of distance between the loci of linked factors, Journal of Genetics, 8, p. 299-309 (1919). 
  18. Hayes (B.).— QTL Mapping, MAS, and Genomic Selection, Short course organized by Iowa State University (2007). 
  19. Lander (E.S.), Botstein (D.).— Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 138, p. 235-240 (1989). 
  20. Lebowitz (R.J.), Soller (M.), Beckmann (J.S.).— Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines, Theoretical and Applied Genetics, 73, p. 556-562 (1987). 
  21. Muranty (H.), Goffinet (B.).— Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus, Biometrics, 53, p. 629-643 (1997). Zbl0878.62087
  22. Rabier (C.-E.).— On stochastic processes for Quantitative Trait Locus mapping under selective genotyping, Statistics, DOI:10.1080/02331888.2013.858720 (2013). 
  23. Rabier (C.-E.).— On statistical inference for selective genotyping, Journal of Statistical Planning and Inference, 147, p. 24-52 (2014). Zbl1278.62174MR3151844
  24. Rebaï (A.), Goffinet (B.), Mangin (B.).— Approximate thresholds of interval mapping tests for QTL detection, Genetics, 138, p. 235-240 (1994). 
  25. Rebaï (A.), Goffinet (B.), Mangin (B.).— Comparing power of different methods for QTL detection, Biometrics, 51, p. 87-99 (1995). Zbl0825.62801
  26. Siegmund (D.).— Sequential analysis: tests and confidence intervals, Springer, New York (1985). Zbl0573.62071MR799155
  27. Siegmund (D.), Yakir (B.).— The statistics of gene mapping, Springer, New York (2007). Zbl1280.62012MR2301277
  28. Van der Vaart (A.W.).— Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics (1998). Zbl0910.62001MR1652247
  29. Wu (R.), MA (C.X.), Casella (G.).— Statistical Genetics of Quantitative Traits, Springer, New York (2007). Zbl1126.92036MR2344949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.