Likelihood ratio inequalities with applications to various mixtures

Elisabeth Gassiat

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 6, page 897-906
  • ISSN: 0246-0203

How to cite

top

Gassiat, Elisabeth. "Likelihood ratio inequalities with applications to various mixtures." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 897-906. <http://eudml.org/doc/77747>.

@article{Gassiat2002,
author = {Gassiat, Elisabeth},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {asymptotic power; self-normalized score tests},
language = {eng},
number = {6},
pages = {897-906},
publisher = {Elsevier},
title = {Likelihood ratio inequalities with applications to various mixtures},
url = {http://eudml.org/doc/77747},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Gassiat, Elisabeth
TI - Likelihood ratio inequalities with applications to various mixtures
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 897
EP - 906
LA - eng
KW - asymptotic power; self-normalized score tests
UR - http://eudml.org/doc/77747
ER -

References

top
  1. [1] B. Bercu, E. Gassiat, E. Rio, Concentration inequality, large and moderate deviations for self-normalized empirical processes, Ann. Probab., to appear. Zbl1021.60013MR1944001
  2. [2] D. Dacunha-Castelle, E. Gassiat, Testing in locally conic models, ESAIM Probab. Statist.1 (1997). Zbl1007.62507MR1468112
  3. [3] D. Dacunha-Castelle, E. Gassiat, Testing the order of a model using locally conic parametrization: population mixtures and stationary ARMA processes, Ann. Statist.27 (4) (1999) 1178-1209. Zbl0957.62073MR1740115
  4. [4] P. Doukhan, P. Massart, E. Rio, Invariance principles for absolutely regular empirical processes, Ann. Inst. Henri Poincaré31 (2) (1995) 393-427. Zbl0817.60028MR1324814
  5. [5] B.G. Leroux, Consistent estimation of a mixing distribution, Ann. Statist.20 (1992) 1350-1360. Zbl0763.62015MR1186253
  6. [6] B.G. Leroux, M.L. Puterman, Maximum-penalized likelihood estimation for independent and Markov dependent mixture models, Biometrics48 (1992) 545-558. 
  7. [7] X. Liu, Y. Shao, Asymptotics of the likelihood ratio under loss of identifiability with applications to finite mixture models, Preprint, 2001. 
  8. [8] G. Peskir, M. Weber, Necessary and sufficient conditions for the uniform law of large numbers in the stationary case, in: Budkovic D., (Eds.), Functional Analysis IV, Proceedings of the Postgraduate School and Conference Held at the Inter-university Center, Dubrovnic, Croatia, 1993, Mat. Institut, Var. Publ. Ser., Aarhus Univ., 43, 1994, pp. 165-190. Zbl0823.60024MR1326386
  9. [9] T. Ryden, Estimating the order of hidden Markov models, Statistics26 (1995) 345-354. Zbl0836.62057MR1365683
  10. [10] A. Van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998. Zbl0910.62001MR1652247
  11. [11] A. Van der Vaart, J. Wellner, Weak Convergence and Empirical Processes, Springer, New York, 1996. Zbl0862.60002MR1385671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.