[unknown]

Matthias Leuenberger[1]

  • [1] Institute of Mathematics University of Bern Sidlerstrasse 5 CH-3012 Bern (Switzerland)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-22
  • ISSN: 0373-0956

How to cite

top

Leuenberger, Matthias. "null." Annales de l’institut Fourier 0.0 (0): 1-22. <http://eudml.org/doc/275285>.

@article{Leuenberger0,
affiliation = {Institute of Mathematics University of Bern Sidlerstrasse 5 CH-3012 Bern (Switzerland)},
author = {Leuenberger, Matthias},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-22},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275285},
volume = {0},
year = {0},
}

TY - JOUR
AU - Leuenberger, Matthias
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 22
LA - eng
UR - http://eudml.org/doc/275285
ER -

References

top
  1. Erik Andersén, Complete vector fields on ( C * ) n , Proc. Amer. Math. Soc. 128 (2000), 1079-1085 Zbl0958.32018
  2. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven, Compact complex surfaces, 4 (2004), Springer-Verlag, Berlin Zbl1036.14016
  3. Jérémy Blanc, Adrien Dubouloz, Automorphisms of 𝔸 1 -fibered affine surfaces, Trans. Amer. Math. Soc. 363 (2011), 5887-5924 Zbl1239.14053
  4. Marco Brunella, Foliations on complex projective surfaces, Dynamical systems. Part II (2003), 49-77, Scuola Norm. Sup., Pisa Zbl1070.32502
  5. Marco Brunella, Birational geometry of foliations, (2004), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl1082.32022
  6. Marco Brunella, Complete polynomial vector fields on the complex plane, Topology 43 (2004), 433-445 Zbl1047.32015
  7. Daniel Daigle, On locally nilpotent derivations of k [ X 1 , X 2 , Y ] / ( φ ( Y ) - X 1 X 2 ) , J. Pure Appl. Algebra 181 (2003), 181-208 Zbl1077.13013
  8. Hubert Flenner, Shulim Kaliman, Mikhail Zaidenberg, Birational transformations of weighted graphs, Affine algebraic geometry (2007), 107-147, Osaka Univ. Press, Osaka Zbl1129.14056
  9. Hubert Flenner, Shulim Kaliman, Mikhail Zaidenberg, Uniqueness of * - and + -actions on Gizatullin surfaces, Transform. Groups 13 (2008), 305-354 Zbl1154.14046
  10. A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc. 12 (1961), 631-638 Zbl0105.34401
  11. Shulim Kaliman, Frank Kutzschebauch, Matthias Leuenberger, Complete algebraic vector fields on affine surfaces, (2014) 
  12. Frank Kutzschebauch, Matthias Leuenberger, Alvaro Liendo, The algebraic density property for affine toric varieties, J. Pure Appl. Algebra 219 (2015), 3685-3700 Zbl06430548
  13. L. Makar-Limanov, Locally nilpotent derivations on the surface x y = p ( z ) , Proceedings of the Third International Algebra Conference (Tainan, 2002) (2003), 215-219, Kluwer Acad. Publ., Dordrecht Zbl1057.13015
  14. M. McQuillan, Non-commutative Mori theory 
  15. Masakazu Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes, Ann. Sci. École Norm. Sup. (4) 10 (1977), 517-546 Zbl0403.32020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.