Semyon Dyatlov[1]

  • [1] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge, MA 02139 (USA)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-28
  • ISSN: 0373-0956

How to cite


Dyatlov, Semyon. "null." Annales de l’institut Fourier 0.0 (0): 1-28. <http://eudml.org/doc/275289>.

affiliation = {Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge, MA 02139 (USA)},
author = {Dyatlov, Semyon},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-28},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275289},
volume = {0},
year = {0},

AU - Dyatlov, Semyon
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 28
LA - eng
UR - http://eudml.org/doc/275289
ER -


  1. Nicolas Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1-29 
  2. Nicolas Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), 677-735 Zbl1013.35019
  3. Nicolas Burq, Maciej Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), 443-471 (electronic) Zbl1050.35058
  4. Hans Christianson, Dispersive estimates for manifolds with one trapped orbit, Comm. Partial Differential Equations 33 (2008), 1147-1174 Zbl1152.58024
  5. Kiril Datchev, Quantitative limiting absorption principle in the semiclassical limit, Geom. Funct. Anal. 24 (2014), 740-747 Zbl1303.35005
  6. Kiril Datchev, András Vasy, Gluing semiclassical resolvent estimates via propagation of singularities, Int. Math. Res. Not. IMRN (2012), 5409-5443 Zbl1262.58019
  7. Kiril Datchev, András Vasy, Propagation through trapped sets and semiclassical resolvent estimates, Ann. Inst. Fourier (Grenoble) 62 (2012), 2347-2377 (2013) Zbl1271.58014
  8. Kiril Datchev, András Vasy, Semiclassical resolvent estimates at trapped sets, Ann. Inst. Fourier (Grenoble) 62 (2012), 2379-2384 (2013) Zbl1271.58015
  9. Semyon Dyatlov, Exponential energy decay for Kerr–de Sitter black holes beyond event horizons, Math. Res. Lett. 18 (2011), 1023-1035 Zbl1253.83020
  10. Semyon Dyatlov, Asymptotics of linear waves and resonances with applications to black holes, Comm. Math. Phys. 335 (2015), 1445-1485 Zbl1315.83022
  11. Semyon Dyatlov, Resonance projectors and asymptotics for r -normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015), 311-381 Zbl06394348
  12. Semyon Dyatlov, Frédéric Faure, Colin Guillarmou, Power spectrum of the geodesic flow on hyperbolic manifolds Zbl06458702
  13. Semyon Dyatlov, Maciej Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis Zbl06591565
  14. Semyon Dyatlov, Maciej Zworski, Mathematical theory of scattering resonances Zbl06502090
  15. Fréderic Faure, Masato Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds Zbl06451657
  16. C. Gérard, J. Sjöstrand, Resonances en limite semiclassique et exposants de Lyapunov, Comm. Math. Phys. 116 (1988), 193-213 Zbl0698.35118
  17. Arseni Goussev, Robert Schubert, Weelkens Holger, Wiggins Stephen, Quantum theory of reactive scattering in phase space, Adv. Quant. Chem. 60 (2010), 269-332 
  18. Alain Grigis, Johannes Sjöstrand, Microlocal analysis for differential operators, 196 (1994), Cambridge University Press, Cambridge Zbl0804.35001
  19. Peter Hintz, András Vasy, Global well-posedness of quasilinear wave equations on asymptotically de Sitter spaces Zbl1336.35244
  20. Peter Hintz, András Vasy, Non-trapping estimates near normally hyperbolic trapping Zbl1321.58024
  21. Peter Hintz, András Vasy, Semilinear wave equations on asymptotically de Sitter, Kerr–de Sitter and Minkowski spacetimes Zbl1336.35244
  22. M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, (1977), Springer-Verlag, Berlin-New York 
  23. Stéphane Nonnenmacher, Maciej Zworski, Decay of correlations for normally hyperbolic trapping Zbl06442708
  24. Julien Royer, Limiting absorption principle for the dissipative Helmholtz equation, Comm. Partial Differential Equations 35 (2010), 1458-1489 Zbl1205.35056
  25. András Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math. 194 (2013), 381-513 Zbl1315.35015
  26. Georgi Vodev, Exponential bounds of the resolvent for a class of noncompactly supported perturbations of the Laplacian, Math. Res. Lett. 7 (2000), 287-298 Zbl0960.35021
  27. Jared Wunsch, Resolvent estimates with mild trapping Zbl1131.58018
  28. Jared Wunsch, Maciej Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 (2011), 1349-1385 Zbl1228.81170
  29. Maciej Zworski, Semiclassical analysis, 138 (2012), American Mathematical Society, Providence, RI Zbl1252.58001

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.