[unknown]
- [1] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge, MA 02139 (USA)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-28
- ISSN: 0373-0956
Access Full Article
topHow to cite
topDyatlov, Semyon. "null." Annales de l’institut Fourier 0.0 (0): 1-28. <http://eudml.org/doc/275289>.
@article{Dyatlov0,
affiliation = {Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge, MA 02139 (USA)},
author = {Dyatlov, Semyon},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-28},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275289},
volume = {0},
year = {0},
}
TY - JOUR
AU - Dyatlov, Semyon
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 28
LA - eng
UR - http://eudml.org/doc/275289
ER -
References
top- Nicolas Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1-29
- Nicolas Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), 677-735 Zbl1013.35019
- Nicolas Burq, Maciej Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), 443-471 (electronic) Zbl1050.35058
- Hans Christianson, Dispersive estimates for manifolds with one trapped orbit, Comm. Partial Differential Equations 33 (2008), 1147-1174 Zbl1152.58024
- Kiril Datchev, Quantitative limiting absorption principle in the semiclassical limit, Geom. Funct. Anal. 24 (2014), 740-747 Zbl1303.35005
- Kiril Datchev, András Vasy, Gluing semiclassical resolvent estimates via propagation of singularities, Int. Math. Res. Not. IMRN (2012), 5409-5443 Zbl1262.58019
- Kiril Datchev, András Vasy, Propagation through trapped sets and semiclassical resolvent estimates, Ann. Inst. Fourier (Grenoble) 62 (2012), 2347-2377 (2013) Zbl1271.58014
- Kiril Datchev, András Vasy, Semiclassical resolvent estimates at trapped sets, Ann. Inst. Fourier (Grenoble) 62 (2012), 2379-2384 (2013) Zbl1271.58015
- Semyon Dyatlov, Exponential energy decay for Kerr–de Sitter black holes beyond event horizons, Math. Res. Lett. 18 (2011), 1023-1035 Zbl1253.83020
- Semyon Dyatlov, Asymptotics of linear waves and resonances with applications to black holes, Comm. Math. Phys. 335 (2015), 1445-1485 Zbl1315.83022
- Semyon Dyatlov, Resonance projectors and asymptotics for -normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015), 311-381 Zbl06394348
- Semyon Dyatlov, Frédéric Faure, Colin Guillarmou, Power spectrum of the geodesic flow on hyperbolic manifolds Zbl06458702
- Semyon Dyatlov, Maciej Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis Zbl06591565
- Semyon Dyatlov, Maciej Zworski, Mathematical theory of scattering resonances Zbl06502090
- Fréderic Faure, Masato Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds Zbl06451657
- C. Gérard, J. Sjöstrand, Resonances en limite semiclassique et exposants de Lyapunov, Comm. Math. Phys. 116 (1988), 193-213 Zbl0698.35118
- Arseni Goussev, Robert Schubert, Weelkens Holger, Wiggins Stephen, Quantum theory of reactive scattering in phase space, Adv. Quant. Chem. 60 (2010), 269-332
- Alain Grigis, Johannes Sjöstrand, Microlocal analysis for differential operators, 196 (1994), Cambridge University Press, Cambridge Zbl0804.35001
- Peter Hintz, András Vasy, Global well-posedness of quasilinear wave equations on asymptotically de Sitter spaces Zbl1336.35244
- Peter Hintz, András Vasy, Non-trapping estimates near normally hyperbolic trapping Zbl1321.58024
- Peter Hintz, András Vasy, Semilinear wave equations on asymptotically de Sitter, Kerr–de Sitter and Minkowski spacetimes Zbl1336.35244
- M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, (1977), Springer-Verlag, Berlin-New York
- Stéphane Nonnenmacher, Maciej Zworski, Decay of correlations for normally hyperbolic trapping Zbl06442708
- Julien Royer, Limiting absorption principle for the dissipative Helmholtz equation, Comm. Partial Differential Equations 35 (2010), 1458-1489 Zbl1205.35056
- András Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math. 194 (2013), 381-513 Zbl1315.35015
- Georgi Vodev, Exponential bounds of the resolvent for a class of noncompactly supported perturbations of the Laplacian, Math. Res. Lett. 7 (2000), 287-298 Zbl0960.35021
- Jared Wunsch, Resolvent estimates with mild trapping Zbl1131.58018
- Jared Wunsch, Maciej Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 (2011), 1349-1385 Zbl1228.81170
- Maciej Zworski, Semiclassical analysis, 138 (2012), American Mathematical Society, Providence, RI Zbl1252.58001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.