Semiclassical resolvent estimates at trapped sets
Kiril Datchev[1]; András Vasy[2]
- [1] Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4397, U.S.A.
- [2] Department of Mathematics, Stanford University, Stanford, CA 94305-2125, U.S.A.
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2379-2384
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDatchev, Kiril, and Vasy, András. "Semiclassical resolvent estimates at trapped sets." Annales de l’institut Fourier 62.6 (2012): 2379-2384. <http://eudml.org/doc/251071>.
@article{Datchev2012,
abstract = {We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs $\chi $ microlocally supported away from the trapping: $\Vert \chi R_h(E+i0)\chi \Vert = \mathcal\{O\}(h^\{-1\})$, a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, $\tilde\{\chi \}$, to be supported at the trapped set, giving $\Vert \chi R_h(E+i0)\tilde\{\chi \}\Vert = \mathcal\{O\}(\sqrt\{a(h)\}h^\{-1\})$ when the a priori bound is $\Vert \tilde\{\chi \}R_h(E+i0)\tilde\{\chi \}\Vert = \mathcal\{O\}(a(h)h^\{-1\})$.},
affiliation = {Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4397, U.S.A.; Department of Mathematics, Stanford University, Stanford, CA 94305-2125, U.S.A.},
author = {Datchev, Kiril, Vasy, András},
journal = {Annales de l’institut Fourier},
keywords = {Resolvent estimates; trapping; propagation of singularities; resolvent estimates},
language = {eng},
number = {6},
pages = {2379-2384},
publisher = {Association des Annales de l’institut Fourier},
title = {Semiclassical resolvent estimates at trapped sets},
url = {http://eudml.org/doc/251071},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Datchev, Kiril
AU - Vasy, András
TI - Semiclassical resolvent estimates at trapped sets
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2379
EP - 2384
AB - We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs $\chi $ microlocally supported away from the trapping: $\Vert \chi R_h(E+i0)\chi \Vert = \mathcal{O}(h^{-1})$, a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, $\tilde{\chi }$, to be supported at the trapped set, giving $\Vert \chi R_h(E+i0)\tilde{\chi }\Vert = \mathcal{O}(\sqrt{a(h)}h^{-1})$ when the a priori bound is $\Vert \tilde{\chi }R_h(E+i0)\tilde{\chi }\Vert = \mathcal{O}(a(h)h^{-1})$.
LA - eng
KW - Resolvent estimates; trapping; propagation of singularities; resolvent estimates
UR - http://eudml.org/doc/251071
ER -
References
top- Nicolas Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), 677-755 Zbl1013.35019MR1914456
- Nicolas Burq, Maciej Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17:2 (2004), 443-471 Zbl1050.35058MR2051618
- Fernando Cardoso, Georgi Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II, Ann. Henri Poincaré 3 (2002), 673-691 Zbl1021.58016MR1933365
- Hans Christianson, Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal. 246 (2007), 145-195 Zbl1119.58018MR2321040
- Hans Christianson, Emmanuel Schenck, András Vasy, Jared Wunsch, From resolvent estimates to damped waves
- Kiril Datchev, András Vasy, Propagation through trapped sets and semiclassical resolvent estimates, Annales de l’Institut Fourier 62.6 (2012), 2345-2375 Zbl1271.58014
- Lars Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, (1994), Springer Verlag Zbl0601.35001MR1313500
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.