Products of conjugacy classes in finite unitary groups G U ( 3 , q 2 ) and S U ( 3 , q 2 )

S.Yu. Orevkov[1]

  • [1] Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 2, page 219-251
  • ISSN: 0240-2963

Abstract

top
For the groups G U ( 3 ) , S U ( 3 ) , G L ( 3 ) , S U ( 3 ) over a finite field we solve the class product problem, i.e., we give a complete list of m -tuples of conjugacy classes whose product does not contain the identity matrix.

How to cite

top

Orevkov, S.Yu.. "Products of conjugacy classes in finite unitary groups $GU(3,q^2)$ and $SU(3,q^2)$." Annales de la faculté des sciences de Toulouse Mathématiques 22.2 (2013): 219-251. <http://eudml.org/doc/275293>.

@article{Orevkov2013,
abstract = {For the groups $GU(3)$, $SU(3)$, $GL(3)$, $SU(3)$ over a finite field we solve the class product problem, i.e., we give a complete list of $m$-tuples of conjugacy classes whose product does not contain the identity matrix.},
affiliation = {Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France},
author = {Orevkov, S.Yu.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {class product problem; products of conjugacy classes; finite unitary groups; finite fields},
language = {eng},
month = {6},
number = {2},
pages = {219-251},
publisher = {Université Paul Sabatier, Toulouse},
title = {Products of conjugacy classes in finite unitary groups $GU(3,q^2)$ and $SU(3,q^2)$},
url = {http://eudml.org/doc/275293},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Orevkov, S.Yu.
TI - Products of conjugacy classes in finite unitary groups $GU(3,q^2)$ and $SU(3,q^2)$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 2
SP - 219
EP - 251
AB - For the groups $GU(3)$, $SU(3)$, $GL(3)$, $SU(3)$ over a finite field we solve the class product problem, i.e., we give a complete list of $m$-tuples of conjugacy classes whose product does not contain the identity matrix.
LA - eng
KW - class product problem; products of conjugacy classes; finite unitary groups; finite fields
UR - http://eudml.org/doc/275293
ER -

References

top
  1. Arad (Z.), Herzog (M.) (eds.).— Products of conjugacy classes in groups Lecture Notes in Math. 1112, Springer-Verlag, Berlin, Heidelberg, N.Y., Tokyo (1985). Zbl0561.20004MR783067
  2. Agnihotri (S.), Woodward (C.).— Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Research Letters, 5, p. 817-836 (1998). Zbl1004.14013MR1671192
  3. Belkale (P.).— Local systems on 1 - S for S a finite set, Compos. Math., 129, p. 67-86 (2001). Zbl1042.14031MR1856023
  4. Dickson (L. E.).— Linear groups with an exposition of the Galois field theory, Teubner, addr Leipzig (1901). Zbl32.0128.01
  5. Ennola (V.).— On the conjugacy classes of the finite unitary groups, Ann. Acad. Sci. Fennicae, Ser. A I., 313, p. 3-13 (1962). Zbl0105.02403MR139651
  6. Ennola (V.).— On the characters of the finite unitary groups, Ann. Acad. Sci. Fennicae, Ser. A I., 323, p. 3-35 (1963). Zbl0109.26001MR156900
  7. GAP software; the file ctgeneri.tbl. 
  8. Geck (M.).— Diploma thesis. 
  9. Gordeev (N. L.).— Products of conjugacy classes in perfect linear groups. Extended covering number, Zapiski Nauchn. Semin. POMI, 321 (2005), p. 67-89, Russian, English transl., J. Math. Sci., 136, p. 3867-3879 (2006). Zbl1088.20024MR2138412
  10. Karni (S.).— Covering number of groups of small order and sporadic groups, Ch. 3 in [refAH], p. 52-196. MR783069
  11. Lev (A.).— The covering number of the group PSL n ( F ) , J. Algebra, 182, p. 60-84 (1996). Zbl0855.20039MR1388858
  12. Liebeck (M. W.), Shalev (A.).— Diameter of finite simple groups: sharp bounds and applications, Ann. of Math., 154, p. 383-406 (2001). Zbl1003.20014MR1865975
  13. Malle (G.), Matzat (B. H.).— Inverse Galois Theory, Springer-Verlag, addr Berlin, N.Y. (1999). Zbl0940.12001MR1711577
  14. Orevkov (S. Yu.).— Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. of Knot Theory and Ramifications, 10, p. 1005-1023 (2001). Zbl1030.20026MR1867106
  15. Simpson (W.A.), Frame (J.S.).— The character tables for SL ( 3 , q ) , SU ( 3 , q 2 ) , PSL ( 3 , q ) , PSU ( 3 , q 2 ) , Canad. J. Math., 25, p. 486-494 (1973). Zbl0264.20010MR335618
  16. Wall (G. E.) On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc., 3, p. 1-62 (1963). Zbl0122.28102MR150210
  17. Wall (G. E.).— Conjugacy classes in projective and special linear groups, Bull. Austral. Math. Soc., 22, p. 339-364 (1980). Zbl0438.20031MR601642

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.