[unknown]
- [1] Université de Poitiers Laboratoire de Mathématiques et Applications Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-38
- ISSN: 0373-0956
Access Full Article
topHow to cite
topSadaka, Guilnard. "null." Annales de l’institut Fourier 0.0 (0): 1-38. <http://eudml.org/doc/275301>.
@article{Sadaka0,
affiliation = {Université de Poitiers Laboratoire de Mathématiques et Applications Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)},
author = {Sadaka, Guilnard},
journal = {Annales de l’institut Fourier},
language = {fre},
number = {0},
pages = {1-38},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275301},
volume = {0},
year = {0},
}
TY - JOUR
AU - Sadaka, Guilnard
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 38
LA - fre
UR - http://eudml.org/doc/275301
ER -
References
top- Jonathan Brundan, Simon M. Goodwin, Good grading polytopes, Proc. Lond. Math. Soc. (3) 94 (2007), 155-180 Zbl1120.17007
- Roger W. Carter, Finite groups of Lie type, (1985), John Wiley & Sons, Inc., New York Zbl0567.20023
- Neil Chriss, Victor Ginzburg, Representation theory and complex geometry, (1997), Birkhäuser Boston, Inc., Boston, MA Zbl0879.22001
- David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008
- Wee Liang Gan, Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. (2002), 243-255 Zbl0989.17014
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory 228 (2004), 1-211, Birkhäuser Boston, Boston, MA Zbl1169.14319
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184 Zbl0405.22013
- T. E. Lynch, Generalized Whittaker vectors and representation theory, (1979)
- Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1-55 Zbl1005.17007
- G. Sadaka, Paires admissibles d’une algèbre de Lie simple complexe et -algèbres finies, (2013)
- Patrice Tauvel, Rupert W. T. Yu, Lie algebras and algebraic groups, (2005), Springer-Verlag, Berlin Zbl1068.17001
- Izu Vaisman, Lectures on the geometry of Poisson manifolds, 118 (1994), Birkhäuser Verlag, Basel Zbl0810.53019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.