[unknown]

Guilnard Sadaka[1]

  • [1] Université de Poitiers Laboratoire de Mathématiques et Applications Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-38
  • ISSN: 0373-0956

How to cite

top

Sadaka, Guilnard. "null." Annales de l’institut Fourier 0.0 (0): 1-38. <http://eudml.org/doc/275301>.

@article{Sadaka0,
affiliation = {Université de Poitiers Laboratoire de Mathématiques et Applications Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)},
author = {Sadaka, Guilnard},
journal = {Annales de l’institut Fourier},
language = {fre},
number = {0},
pages = {1-38},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275301},
volume = {0},
year = {0},
}

TY - JOUR
AU - Sadaka, Guilnard
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 38
LA - fre
UR - http://eudml.org/doc/275301
ER -

References

top
  1. Jonathan Brundan, Simon M. Goodwin, Good grading polytopes, Proc. Lond. Math. Soc. (3) 94 (2007), 155-180 Zbl1120.17007
  2. Roger W. Carter, Finite groups of Lie type, (1985), John Wiley & Sons, Inc., New York Zbl0567.20023
  3. Neil Chriss, Victor Ginzburg, Representation theory and complex geometry, (1997), Birkhäuser Boston, Inc., Boston, MA Zbl0879.22001
  4. David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008
  5. Wee Liang Gan, Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. (2002), 243-255 Zbl0989.17014
  6. Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory 228 (2004), 1-211, Birkhäuser Boston, Boston, MA Zbl1169.14319
  7. Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184 Zbl0405.22013
  8. T. E. Lynch, Generalized Whittaker vectors and representation theory, (1979) 
  9. Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1-55 Zbl1005.17007
  10. G. Sadaka, Paires admissibles d’une algèbre de Lie simple complexe et W -algèbres finies, (2013) 
  11. Patrice Tauvel, Rupert W. T. Yu, Lie algebras and algebraic groups, (2005), Springer-Verlag, Berlin Zbl1068.17001
  12. Izu Vaisman, Lectures on the geometry of Poisson manifolds, 118 (1994), Birkhäuser Verlag, Basel Zbl0810.53019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.