# On Whittaker Vectors and Representation Theory.

Inventiones mathematicae (1978)

- Volume: 48, page 101-184
- ISSN: 0020-9910; 1432-1297/e

## Access Full Article

top## How to cite

topKostant, Bertram. "On Whittaker Vectors and Representation Theory.." Inventiones mathematicae 48 (1978): 101-184. <http://eudml.org/doc/142586>.

@article{Kostant1978,

author = {Kostant, Bertram},

journal = {Inventiones mathematicae},

keywords = {Complex Semisimple Lie Algebra; Nilradical; Borel Subalgebra; Whittaker Vector; Irreducible Representations of a Semisimple Lie Group; Whittaker Models; Generalized Toda Lattice Quantized System; Whittaker Modules},

pages = {101-184},

title = {On Whittaker Vectors and Representation Theory.},

url = {http://eudml.org/doc/142586},

volume = {48},

year = {1978},

}

TY - JOUR

AU - Kostant, Bertram

TI - On Whittaker Vectors and Representation Theory.

JO - Inventiones mathematicae

PY - 1978

VL - 48

SP - 101

EP - 184

KW - Complex Semisimple Lie Algebra; Nilradical; Borel Subalgebra; Whittaker Vector; Irreducible Representations of a Semisimple Lie Group; Whittaker Models; Generalized Toda Lattice Quantized System; Whittaker Modules

UR - http://eudml.org/doc/142586

ER -

## Citations in EuDML Documents

top- Guilnard Sadaka, [unknown]
- Dinakar Ramakrishnan, Multiplicity one for the Gelfand-Graev representation of a linear group
- Eric Stade, The reciprocal of the beta function and $GL(n,\mathbb{R})$ Whittaker functions
- Taku Ishii, A remark on Whittaker functions on SL$(n,\mathbb{R})$
- Aboubeker Zahid, Les endomorphismes $k$-finis des modules de Whittaker
- David H. Collingwood, Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules
- Hisayosi Matumoto, ${C}^{-\infty}$-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
- Jim W. Cogdell, Igor I. Piatetski-Shapiro, Converse theorems for $G{L}_{n}$
- Hisayosi Matumoto, ${C}^{-\infty}$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.