Semi-contractions des espaces localement compacts et cas des variétés complexes

Jean-Jacques Loeb

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 3, page 559-572
  • ISSN: 0240-2963

Abstract

top
Inspired by papers of Beardon, we give results for fixed points and orbits of contractions and semi-contractions of locally compact connected spaces. More precise results are obtained for the case of complex Kobayashi hyperbolic manifolds.

How to cite

top

Loeb, Jean-Jacques. "Semi-contractions des espaces localement compacts et cas des variétés complexes." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 559-572. <http://eudml.org/doc/275305>.

@article{Loeb2013,
abstract = {En nous inspirant d’articles de Beardon, nous donnons des résultats concernant les points fixes et les orbites d’auto-applications contractantes et semi-contractantes des espaces connexes localement compacts. Des résultats plus précis sont obtenus dans le cas des variétés complexes Kobayashi hyperboliques.},
author = {Loeb, Jean-Jacques},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {fixed point; periodic point; contraction mapping; nonexpansive mapping; complex Kobayashi hyperbolic manifold},
language = {fre},
month = {6},
number = {3},
pages = {559-572},
publisher = {Université Paul Sabatier, Toulouse},
title = {Semi-contractions des espaces localement compacts et cas des variétés complexes},
url = {http://eudml.org/doc/275305},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Loeb, Jean-Jacques
TI - Semi-contractions des espaces localement compacts et cas des variétés complexes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 559
EP - 572
AB - En nous inspirant d’articles de Beardon, nous donnons des résultats concernant les points fixes et les orbites d’auto-applications contractantes et semi-contractantes des espaces connexes localement compacts. Des résultats plus précis sont obtenus dans le cas des variétés complexes Kobayashi hyperboliques.
LA - fre
KW - fixed point; periodic point; contraction mapping; nonexpansive mapping; complex Kobayashi hyperbolic manifold
UR - http://eudml.org/doc/275305
ER -

References

top
  1. Abate (M.).— Iteration theory of holomorphic maps on taut manifolds, Mediterranean Press, Rende (1989). Zbl0747.32002MR1098711
  2. Beardon (A. F.).— Iteration of contractions and analytic maps, J. London Math. Soc. (2) 41, no. 1, p. 141-150 (1990). Zbl0662.30017MR1063551
  3. Beardon (A. F.).— The dynamics of contractions, Ergodic Theory Dynam. Systems 17, no. 6, p. 1257-1266 (1997). Zbl0952.54023MR1488316
  4. Bedford (E.).— On the automorphism group of a Stein manifold, Math. Ann. 226, no.2, p. 215-227 (1983). Zbl0532.32014MR724738
  5. Calka (A.).— On conditions under which isometries have bounded orbits, Colloq. Math. 48, no. 2, 219-227 (1984). Zbl0558.54021MR758530
  6. Edelstein (M.).— On fixed and periodic points under contractive mappings, J. London Math. Soc. 37, p. 4-79 (1962). Zbl0113.16503MR133102
  7. Edelstein (M.).— On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60, p. 439-447 (1964). Zbl0196.44603MR164222
  8. Hofmann (K. H.), Morris (S. A.).— The sructures of compact groups, de Gruyter, Studies in mathematics, Berlin New-York (1998). Zbl0919.22001MR1646190
  9. Karlsson (A.).— Nonexpanding maps, Busemann functions, and multiplicative ergodic theory, Rigidity in dynamics and geometry (Cambridge, 2000), p. 283-294, Springer, Berlin (2002). Zbl1035.37015MR1919406
  10. Kobayashi (Sh.).— Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318. Springer-Verlag, Berlin (1998). Zbl0917.32019MR1635983
  11. Loeb (J.-J.).— On complex automorphisms and holomorphic equivalence of domains, Symmetries in complex analysis, p. 125-156, Contemp. Math., 468, Amer. Math. Soc., Providence, RI (2008). Zbl1156.32011MR2484094
  12. Loeb (J.-J.), Vigué (J.-P.).— Sur les automorphismes analytiques des variétés hyperboliques, Bull. Sci. Math. 131, no. 5, p. 469-476 (2007). Zbl1198.32011MR2337737
  13. Narashiman (R.).— Several complex variables, Chicago lectures in mathematics, The University of Chicago Press, Chicago and London (1971). Zbl0223.32001
  14. Vigué (J.-P.).— Sur les points fixes d’applications holomorphes, C.R. Acad. Sc. Paris I. Math., 303, p. 927-930 (1986). Zbl0607.32016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.