Gluing complex discs to Lagrangian manifolds by Gromov’s method

Alexandre Sukhov; Alexander Tumanov

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 4, page 811-842
  • ISSN: 0240-2963

Abstract

top
The paper discusses some aspects of Gromov’s theory of gluing complex discs to Lagrangian manifolds.

How to cite

top

Sukhov, Alexandre, and Tumanov, Alexander. "Gluing complex discs to Lagrangian manifolds by Gromov’s method." Annales de la faculté des sciences de Toulouse Mathématiques 22.4 (2013): 811-842. <http://eudml.org/doc/275310>.

@article{Sukhov2013,
abstract = {The paper discusses some aspects of Gromov’s theory of gluing complex discs to Lagrangian manifolds.},
author = {Sukhov, Alexandre, Tumanov, Alexander},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {pseudo-holomorphic curves; Lagrangian manifolds; symplectic topology},
language = {eng},
month = {6},
number = {4},
pages = {811-842},
publisher = {Université Paul Sabatier, Toulouse},
title = {Gluing complex discs to Lagrangian manifolds by Gromov’s method},
url = {http://eudml.org/doc/275310},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Sukhov, Alexandre
AU - Tumanov, Alexander
TI - Gluing complex discs to Lagrangian manifolds by Gromov’s method
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 4
SP - 811
EP - 842
AB - The paper discusses some aspects of Gromov’s theory of gluing complex discs to Lagrangian manifolds.
LA - eng
KW - pseudo-holomorphic curves; Lagrangian manifolds; symplectic topology
UR - http://eudml.org/doc/275310
ER -

References

top
  1. Alexander (H.).— Gromov’s method and Bennequin’s problem, Invent. Math. 125, p. 135-148, (1996). Zbl0853.32003MR1389963
  2. Arnold (V.I.).— Symplectic geometry and topology, J. Math. Phys. 41, p. 3307-3343, (2000). Zbl1021.53053MR1768639
  3. Audin (M.), Lafontaine (J.) (Eds.).— “Holomorphic curves in symplectic geometry", Birkhauser, Progress in Mathematics, V.117 (1994). Zbl0802.53001MR1274923
  4. Bers (L.), Schechter (M.).— “Elliptic equations", 1964 Partial differential equations, p. 131-299, Interscience, New York, (1964). Zbl0128.09404MR165224
  5. Chirka (E.M.).— “Complex analytic sets", Kluwer, (1989). Zbl0683.32002MR1111477
  6. Diederich (K.), Sukhov (A.).— Plurisubharmonic exhaustion functions and almost complex Stein structures, Mich. Math. J. 56, p. 331-355, (2008). Zbl1161.32012MR2492398
  7. Donaldson (S.).— What is ... a pseudoholomorphic curve?, Notices of the AMS, 52, p. 1026-1027, (2005). Zbl1090.32015MR2168014
  8. Duval (J.) and Gayet (D.).— Riemann surfaces and totally real tori, arXiv 0910.2139. Zbl1300.32011
  9. Eliashberg (Y.), Traynor (L.) (Eds.).— “Symplectic geometry and topology", AMS, Princeton, NJ. (1997). MR1702940
  10. Gaussier (H.), Sukhov (A.).— Levi-flat filling of real two-spheres in symplectic manifolds (I),(II), Ann. Fac. Sci. Toulouse Math. , XX(2011), p. 515-539, XXI, p. 783-816, (2012). Zbl1242.53107MR2894837
  11. Ivashkovich (S.), Shevchishin (V.).— “Complex curves in almost-complex manifolds and meromorphic hulls", Institut fur Math. Ruhr-Universitat Bochum, (1999). 
  12. Ivashkovich (S.), Shevchishin (V.).— Reflection principle and J -complex curves with boundary on totally real immersions, Commun. Contem. Math. 4, p. 65–106, (2002). Zbl1025.32024MR1890078
  13. Gromov (M.).— Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82, p. 307-347, (1985). Zbl0592.53025
  14. Hofer (H.), Lizan (V.), Sikorav (J.-C.).— On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J.Geom. Anal. 7, p. 144-159, (1997). Zbl0911.53014MR1630789
  15. Hummel (Ch.).— “Gromov’s compactness theorem for pseudoholomorphic curves", Birkhauser, Progress in Mathematics V.151 (1997). Zbl0870.53002MR1451624
  16. McDuff (D.), Salomon (D.).— “Introduction to symplectic topology", 2nd edition, Ofxord University Press, (1998). Zbl0844.58029MR1702941
  17. McDuff (D.), Salomon (D.).— “ J -holomorphic curves and symplectic topology", AMS, Coll. Publ. Vol. 52, (2004). Zbl1064.53051
  18. Mikallef (M.J.), White (B.).— The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. Math. 139, p. 35-85, (1994). Zbl0873.53038MR1314031
  19. Mikhlin (S.), Prössdorf (S.).— “Singular integral equations", Springer Verlag, Berlin, (1986). 
  20. Morrey (Ch.B.), Jr.— “Multiple integrals in the calculus of variations", Springer Verlag. N.Y. (1966). Zbl1213.49002MR202511
  21. Smale (S.).— An infinite dimensinal version of Sard’s theorem, Amer. J. Math. 87, p. 861-866, (1965). Zbl0143.35301MR185604
  22. Sukhov (A.), Tumanov (A.).— Regularization of almost complex structures, Ann. Sc. Norm. Sup. Pisa. 10, p. 389-411, (2011). Zbl1228.32016MR2856153
  23. Sukhov (A.), Tumanov (A.).— Deformation and transversality of pseudo-holomorphic discs , J. Anal. Math. 116, p. 1-16, (2012). Zbl1273.32032MR2892615
  24. Sukhov (A.), Tumanov (A.).— Boundary value problems and J -complex curves, arXiv 1103.0324, to appear in Complex Variables and Elliptic Equations (Special Issue). Zbl1277.32015
  25. Vekua (I. N.).— “Generalized analytic functions", Pergamon Press, (1962). Zbl0100.07603MR150320
  26. Wendland (W.L.).— “Elliptic systems in the plane", Pitman, (1979). Zbl0396.35001MR518816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.