Levi-flat filling of real two-spheres in symplectic manifolds (I)
Hervé Gaussier[1]; Alexandre Sukhov[2]
- [1] Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France
- [2] Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathématique, 59655 Villeneuve d’Ascq, Cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 3, page 515-539
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGaussier, Hervé, and Sukhov, Alexandre. "Levi-flat filling of real two-spheres in symplectic manifolds (I)." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 515-539. <http://eudml.org/doc/219817>.
@article{Gaussier2011,
abstract = {Let $(M,J,\omega )$ be a manifold with an almost complex structure $J$ tamed by a symplectic form $\omega $. We suppose that $M$ has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of $M$ can be foliated by the boundaries of pseudoholomorphic discs.},
affiliation = {Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France; Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathématique, 59655 Villeneuve d’Ascq, Cedex, France},
author = {Gaussier, Hervé, Sukhov, Alexandre},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Bishop disks; confoliations; Levi-flat hypersurfaces; elliptic points},
language = {eng},
month = {7},
number = {3},
pages = {515-539},
publisher = {Université Paul Sabatier, Toulouse},
title = {Levi-flat filling of real two-spheres in symplectic manifolds (I)},
url = {http://eudml.org/doc/219817},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Gaussier, Hervé
AU - Sukhov, Alexandre
TI - Levi-flat filling of real two-spheres in symplectic manifolds (I)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 515
EP - 539
AB - Let $(M,J,\omega )$ be a manifold with an almost complex structure $J$ tamed by a symplectic form $\omega $. We suppose that $M$ has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of $M$ can be foliated by the boundaries of pseudoholomorphic discs.
LA - eng
KW - Bishop disks; confoliations; Levi-flat hypersurfaces; elliptic points
UR - http://eudml.org/doc/219817
ER -
References
top- Barraud (J.F.), Mazzilli (E.).— Regular type of real hypersurfaces in (almost) complex manifolds, Math. Z.248, p. 379-405 (2004). Zbl1082.32017MR2103540
- Bedford (E.), Gaveau (B.).— Envelopes of holomorphy of certain -spheres in . Amer. J. Math.105, p. 975-1009 (1983). Zbl0535.32008MR708370
- Bedford (E.), Klingenberg (W.).— On the envelope of holomorphy of a -sphere in . J. Amer. Math. Soc.4, p. 623-646 (1991). Zbl0736.32009MR1094437
- Bishop (E.).— Differentiable manifolds in complex Euclidean space. Duke Math. J.32, p. 1-21 (1965). Zbl0154.08501MR200476
- Bojarski (B.V.).— Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients. Translated from the 1957 Russian original. With a foreword by Eero Saksman. Report. University of Jyväskylä Department of Mathematics and Statistics, 118. University of Jyväskylä, Jyväskylä, 2009. iv+64 pp. Zbl1173.35403MR2488720
- Chirka (E.).— Introduction to the almost complex analysis, Lecture notes (2003). Zbl1026.32064
- Diederich (K.), Fornaess (J.E.).— Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math.39, p. 129-141 (1977). Zbl0353.32025MR437806
- Diederich (K.), Sukhov (A.).— Plurisubharmonic exhaustion functions and almost complex Stein structures. Michigan Math. J.56, p. 331-355 (2008). Zbl1161.32012MR2492398
- Dubrovin (B.), Novikov (S.), Fomenko (A.).— Modern geometry. Methods and Applications. Part II. Springer-Verlag, N.Y. Inc. (1985). Zbl0565.57001MR807945
- Eliashberg (Y.).— Filling by holomorphic discs and its applications. Geometry of low-dimensional manifolds, 2 (Durham, 1989), p. 45-67, London Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, Cambridge (1990). Zbl0731.53036MR1171908
- Eliashberg (Y.), Thurston (W.).— Confoliations. University Lecture Series, 13. American Mathematical Society, Providence, RI, (1998). x+66 pp. Zbl0893.53001MR1483314
- Fornaess (J.E.), Ma (D.).— A -sphere in that cannot be filled in with analytic disks. Internat. Math. Res. Notices1, p. 17-22 (1995). Zbl0866.57023MR1317640
- Gromov (M.).— Pseudoholomorphic curves in symplectic manifolds. Invent. Math.82, p. 307-347 (1985). Zbl0592.53025MR809718
- Hind (R.).— Filling by holomorphic disks with weakly pseudoconvex boundary conditions. Geom. Funct. Anal.7, p. 462-495 (1997). Zbl0884.53024MR1466335
- Hofer (H.).— Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math.114, p. 515-563 (1993). Zbl0797.58023MR1244912
- Hofer (H.), Lizan (V.), Sikorav (J.C.).— On genericity for holomorphic curves in four-dimensional almost-complex manifolds The Journal of Geometric Analysis7, p. 149-159 (1998). Zbl0911.53014MR1630789
- Kenig (C.), Webster (S.).— The local hull of holomorphy of a surface in the space of two complex variables. Invent. Math. 67, p. 1-21 (1982). Zbl0489.32007MR664323
- Micallef (M.), White (B.).— The structure of branch points in minimal surfaces and in pseudoholomorphic curves. Ann. of Math. (2)141, p. 35-85 (1995). Zbl0873.53038MR1314031
- McDuff (D.).— Singularities and positivity of intersections of -holomorphic curves. With an appendix by Gang Liu. Progr. Math., 117, Holomorphic curves in symplectic geometry, p. 191-215, Birkhäuser, Basel (1994). MR1274930
- McDuff (D.), Salamon (D.).— -holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004. xii+669 pp. Zbl1064.53051MR2045629
- Sikorav (J.C.).— Some properties of holomorphic curves in almost complex manifolds. Holomorphic curves in symplectic geometry, 165-189, Progr. Math., 117, Birkhäuser, Basel (1994). MR1274929
- Sukhov (A.), Tumanov (A.).— Filling hypersurfaces by discs in almost complex manifolds of dimension 2. Indiana Univ. Math. J.57, p. 509-544 (2008). Zbl1187.32021MR2400266
- Sukhov (A.), Tumanov, (A.).— Pseudoholomorphic discs near an elliptic point. Tr. Mat. Inst. Steklova253 (2006), Kompleks. Anal. i Prilozh., p. 296-303; translation in Proc. Steklov Inst. Math., no. 2 (253), p. 275-282 (2006). MR2338704
- Vekua (I.N.).— Generalized analytic functions. Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962 xxix+668 pp. Zbl0100.07603MR150320
- Ye (R.).— Filling by holomorphic curves in symplectic -manifolds. Trans. Amer. Math. Soc.350, p. 213-250 (1998). Zbl0936.53047MR1422913
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.