Levi-flat filling of real two-spheres in symplectic manifolds (I)

Hervé Gaussier[1]; Alexandre Sukhov[2]

  • [1] Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France
  • [2] Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathématique, 59655 Villeneuve d’Ascq, Cedex, France

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 3, page 515-539
  • ISSN: 0240-2963

Abstract

top
Let ( M , J , ω ) be a manifold with an almost complex structure J tamed by a symplectic form ω . We suppose that M has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of M can be foliated by the boundaries of pseudoholomorphic discs.

How to cite

top

Gaussier, Hervé, and Sukhov, Alexandre. "Levi-flat filling of real two-spheres in symplectic manifolds (I)." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 515-539. <http://eudml.org/doc/219817>.

@article{Gaussier2011,
abstract = {Let $(M,J,\omega )$ be a manifold with an almost complex structure $J$ tamed by a symplectic form $\omega $. We suppose that $M$ has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of $M$ can be foliated by the boundaries of pseudoholomorphic discs.},
affiliation = {Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France; Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathématique, 59655 Villeneuve d’Ascq, Cedex, France},
author = {Gaussier, Hervé, Sukhov, Alexandre},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Bishop disks; confoliations; Levi-flat hypersurfaces; elliptic points},
language = {eng},
month = {7},
number = {3},
pages = {515-539},
publisher = {Université Paul Sabatier, Toulouse},
title = {Levi-flat filling of real two-spheres in symplectic manifolds (I)},
url = {http://eudml.org/doc/219817},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Gaussier, Hervé
AU - Sukhov, Alexandre
TI - Levi-flat filling of real two-spheres in symplectic manifolds (I)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 515
EP - 539
AB - Let $(M,J,\omega )$ be a manifold with an almost complex structure $J$ tamed by a symplectic form $\omega $. We suppose that $M$ has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of $M$ can be foliated by the boundaries of pseudoholomorphic discs.
LA - eng
KW - Bishop disks; confoliations; Levi-flat hypersurfaces; elliptic points
UR - http://eudml.org/doc/219817
ER -

References

top
  1. Barraud (J.F.), Mazzilli (E.).— Regular type of real hypersurfaces in (almost) complex manifolds, Math. Z.248, p. 379-405 (2004). Zbl1082.32017MR2103540
  2. Bedford (E.), Gaveau (B.).— Envelopes of holomorphy of certain 2 -spheres in C 2 . Amer. J. Math.105, p. 975-1009 (1983). Zbl0535.32008MR708370
  3. Bedford (E.), Klingenberg (W.).— On the envelope of holomorphy of a 2 -sphere in C 2 . J. Amer. Math. Soc.4, p.  623-646 (1991). Zbl0736.32009MR1094437
  4. Bishop (E.).— Differentiable manifolds in complex Euclidean space. Duke Math. J.32, p. 1-21 (1965). Zbl0154.08501MR200476
  5. Bojarski (B.V.).— Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients. Translated from the 1957 Russian original. With a foreword by Eero Saksman. Report. University of Jyväskylä Department of Mathematics and Statistics, 118. University of Jyväskylä, Jyväskylä, 2009. iv+64 pp. Zbl1173.35403MR2488720
  6. Chirka (E.).— Introduction to the almost complex analysis, Lecture notes (2003). Zbl1026.32064
  7. Diederich (K.), Fornaess (J.E.).— Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math.39, p. 129-141 (1977). Zbl0353.32025MR437806
  8. Diederich (K.), Sukhov (A.).— Plurisubharmonic exhaustion functions and almost complex Stein structures. Michigan Math. J.56, p. 331-355 (2008). Zbl1161.32012MR2492398
  9. Dubrovin (B.), Novikov (S.), Fomenko (A.).— Modern geometry. Methods and Applications. Part II. Springer-Verlag, N.Y. Inc. (1985). Zbl0565.57001MR807945
  10. Eliashberg (Y.).— Filling by holomorphic discs and its applications. Geometry of low-dimensional manifolds, 2 (Durham, 1989), p. 45-67, London Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, Cambridge (1990). Zbl0731.53036MR1171908
  11. Eliashberg (Y.), Thurston (W.).— Confoliations. University Lecture Series, 13. American Mathematical Society, Providence, RI, (1998). x+66 pp. Zbl0893.53001MR1483314
  12. Fornaess (J.E.), Ma (D.).— A 2 -sphere in C 2 that cannot be filled in with analytic disks. Internat. Math. Res. Notices1, p. 17-22 (1995). Zbl0866.57023MR1317640
  13. Gromov (M.).— Pseudoholomorphic curves in symplectic manifolds. Invent. Math.82, p. 307-347 (1985). Zbl0592.53025MR809718
  14. Hind (R.).— Filling by holomorphic disks with weakly pseudoconvex boundary conditions. Geom. Funct. Anal.7, p. 462-495 (1997). Zbl0884.53024MR1466335
  15. Hofer (H.).— Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math.114, p. 515-563 (1993). Zbl0797.58023MR1244912
  16. Hofer (H.), Lizan (V.), Sikorav (J.C.).— On genericity for holomorphic curves in four-dimensional almost-complex manifolds The Journal of Geometric Analysis7, p. 149-159 (1998). Zbl0911.53014MR1630789
  17. Kenig (C.), Webster (S.).— The local hull of holomorphy of a surface in the space of two complex variables. Invent. Math. 67, p. 1-21 (1982). Zbl0489.32007MR664323
  18. Micallef (M.), White (B.).— The structure of branch points in minimal surfaces and in pseudoholomorphic curves. Ann. of Math. (2)141, p. 35-85 (1995). Zbl0873.53038MR1314031
  19. McDuff (D.).— Singularities and positivity of intersections of J -holomorphic curves. With an appendix by Gang Liu. Progr. Math., 117, Holomorphic curves in symplectic geometry, p. 191-215, Birkhäuser, Basel (1994). MR1274930
  20. McDuff (D.), Salamon (D.).— J -holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004. xii+669 pp. Zbl1064.53051MR2045629
  21. Sikorav (J.C.).— Some properties of holomorphic curves in almost complex manifolds. Holomorphic curves in symplectic geometry, 165-189, Progr. Math., 117, Birkhäuser, Basel (1994). MR1274929
  22. Sukhov (A.), Tumanov (A.).— Filling hypersurfaces by discs in almost complex manifolds of dimension 2. Indiana Univ. Math. J.57, p. 509-544 (2008). Zbl1187.32021MR2400266
  23. Sukhov (A.), Tumanov, (A.).— Pseudoholomorphic discs near an elliptic point. Tr. Mat. Inst. Steklova253 (2006), Kompleks. Anal. i Prilozh., p. 296-303; translation in Proc. Steklov Inst. Math., no. 2 (253), p. 275-282 (2006). MR2338704
  24. Vekua (I.N.).— Generalized analytic functions. Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962 xxix+668 pp. Zbl0100.07603MR150320
  25. Ye (R.).— Filling by holomorphic curves in symplectic 4 -manifolds. Trans. Amer. Math. Soc.350, p. 213-250 (1998). Zbl0936.53047MR1422913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.