Principal congruence link complements

Mark D. Baker; Alan W. Reid

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 5, page 1063-1092
  • ISSN: 0240-2963

Abstract

top
In this paper we study principal congruence link complements in S 3 . It is known that there are only finitely many such link complements, and we make a start on enumerating them using a combination of theoretical methods and computer calculations with MAGMA.

How to cite

top

Baker, Mark D., and Reid, Alan W.. "Principal congruence link complements." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 1063-1092. <http://eudml.org/doc/275311>.

@article{Baker2014,
abstract = {In this paper we study principal congruence link complements in $S^3$. It is known that there are only finitely many such link complements, and we make a start on enumerating them using a combination of theoretical methods and computer calculations with MAGMA.},
author = {Baker, Mark D., Reid, Alan W.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Bianchi groups; arithmetic three–manifolds; links},
language = {eng},
number = {5},
pages = {1063-1092},
publisher = {Université Paul Sabatier, Toulouse},
title = {Principal congruence link complements},
url = {http://eudml.org/doc/275311},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Baker, Mark D.
AU - Reid, Alan W.
TI - Principal congruence link complements
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 1063
EP - 1092
AB - In this paper we study principal congruence link complements in $S^3$. It is known that there are only finitely many such link complements, and we make a start on enumerating them using a combination of theoretical methods and computer calculations with MAGMA.
LA - eng
KW - Bianchi groups; arithmetic three–manifolds; links
UR - http://eudml.org/doc/275311
ER -

References

top
  1. Adams (C. C.) and Reid (A. W.).— Systoles of hyperbolic 3-manifolds, Math. Proc. Camb. Phil. Soc. 128, p. 103-110 (2000). Zbl0958.57015MR1724432
  2. Agol (I.).— Bounds on exceptional Dehn filling, Geometry and Topology 4, p. 431-449 (2000). Zbl0959.57009MR1799796
  3. Baker (M. D.).— Link complements and quadratic imaginary number fields, Ph.D Thesis M.I.T. (1981). 
  4. Baker (M. D.).— Link complements and the homology of arithmetic subgroups of PSL ( 2 , C ) , I.H.E.S. preprint (1982). 
  5. Baker (M. D.).— Link complements and the Bianchi modular groups, Trans. A. M. S. 353, p. 3229-3246 (2001). Zbl0986.20049MR1695016
  6. Baker (M. D.).— Link complements and integer rings of class number greater than one, TOPOLOGY ’90 p. 55-59, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter (1992). Zbl0768.57005MR1184402
  7. Baker (M. D.) and Reid (A. W.).— Arithmetic knots in closed 3-manifolds, in Proceedings of Knots 2000, J. Knot Theory and its Ramifications 11, p. 903-920 (2002). Zbl1023.57008MR1936242
  8. Bosma (W.), Cannon (J.), and Playoust (C.).— The Magma algebra system. I. The user language, J. Symbolic Comput. 24, p. 235-265 (1997). Zbl0898.68039MR1484478
  9. Coulsen (D.), Goodman (O. A.), Hodgson (C. D.) and Neumann (W. D.).— Computing arithmetic invariants of 3-manifolds, Experimental J. Math. 9, p. 127-152 (2000). Zbl1002.57044MR1758805
  10. Culler (M.), Dunfield (N.) and Weeks (J.).— SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http://snappy.computop.org. 
  11. Dennin (J. B.).— Fields of modular functions of genus 0 , Illinois J. Math. 15, p. 442-455 (1971). Zbl0223.10010MR304503
  12. Dennin (J. B.).— Subfields of K ( 2 n ) of genus 0 , Illinois J. Math. 16, p. 502-518 (1972). Zbl0255.10029MR306347
  13. Dennin (J. B.).— The genus of subfields of K ( p n ) , Illinois J. Math. 18, p. 246-264 (1974). Zbl0289.10016MR342466
  14. Dixon (L. E.).— Linear groups, with an exposition of the Galois field theory, Dover Publications, (1958). MR104735
  15. Futer (D.), Kalfagianni (E.) and Purcell (J.).— On diagrammatic bounds of knot volumes and spectral invariants, Geom. Dedicata 147, p. 115-130 (2010). Zbl1208.57006MR2660569
  16. Goerner (M.).— Visualizing regular tessellations: principal congruence links and and equivariant morphisms from surfaces to 3-manifold, Ph.D Thesis, U. C. Berkeley (2011). MR3022513
  17. Goerner (M.).— Regular tessellation links, ArXiv:1406.2827. 
  18. Gordon (C. McA.).— Links and their complements, in Topology and Geometry: commemorating SISTAG, p. 71-82, Contemp. Math., 314, Amer. Math. Soc. (2002). Zbl1027.57006MR1941623
  19. Grunewald (F.) and Schwermer (J.).— Arithmetic quatients of hyperbolic 3-space, cusp forms and link complements, Duke Math. J. 48, p. 351-358 (1981). Zbl0485.57005MR620254
  20. Grunewald (F.) and Schwermer (J.).— A non-vanishing theorem for the cuspidal cohomology of SL 2 over imaginary quadratic integers, Math. Annalen 258, p. 183-200 (1981). Zbl0458.20041MR641824
  21. Grunewald (F.) and Schwermer (J.).— Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3 -space, Trans A. M. S. 335, p. 47-78 (1993). Zbl0773.20017MR1020042
  22. Hatcher (A.).— Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc 27, p. 345-355 (1983). Zbl0516.57001MR692540
  23. Lackenby (M.).— Word hyperbolic Dehn surgery, Invent. Math. 140, p. 243-282 (2000). Zbl0947.57016MR1756996
  24. Lackenby (M.).— Spectral geometry, link complements and surgery diagrams, Geom. Dedicata 147, p. 191-206 (2010). Zbl1211.57011MR2660577
  25. Lakeland (G.) and Leininger (C.).— Systoles and Dehn surgery for hyperbolic 3-manifolds , to appear Algebraic and Geometric Topology. Zbl1293.57010MR3190600
  26. Maclachlan (C.) and Reid (A. W.).— The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, 219, Springer-Verlag (2003). Zbl1025.57001MR1937957
  27. Reid (A. W.).— The arithmeticity of knot complements, J. London Math. Soc. 43, p. 171-184 (1991). Zbl0847.57013MR1099096
  28. Sebbar (A.).— Classification of torsion-free genus zero congruence subgroups, Proc. A. M. S. 129, p. 2517-2527 (2001). Zbl0981.20038MR1838372
  29. Shimura (G.).— Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Math. Society of Japan 11 (1971). Zbl0221.10029MR314766
  30. Swan (R. G.).— Generators and relations for certain special linear groups, Advances in Math. 6, p. 1-77 (1971). Zbl0221.20060MR284516
  31. Thompson (J. G.).— A finiteness theorem for subgroups of PSL ( 2 , R ) , in Proc. Symp. Pure Math. 37, 533-555, A.M.S. Publications (1980). Zbl0448.20044MR604632
  32. Thurston (W. P.).— The Geometry and Topology of 3-Manifolds, Princeton University mimeographed notes, (1979). 
  33. Thurston (W. P.).— Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. A. M. S. 6, p. 357-381 (1982). Zbl0496.57005MR648524
  34. Vogtmann (K.).— Rational homology of Bianchi groups, Math. Ann. 272, p. 399-419 (1985). Zbl0553.20023MR799670
  35. Zograf (P.).— A spectral proof of Rademacher’s conjecture for congruence subgroups of the modular group, J. Reine Angew. Math. 414, p. 113-116 (1991). Zbl0709.11031MR1092625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.