Equivalence classes of Latin squares and nets in P 2

Corey Dunn; Matthew Miller; Max Wakefield; Sebastian Zwicknagl

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 2, page 335-351
  • ISSN: 0240-2963

Abstract

top
The fundamental combinatorial structure of a net in P 2 is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in P 2 . Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in P 2 are empty to show some non-existence results for 4-nets in P 2 .

How to cite

top

Dunn, Corey, et al. "Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 335-351. <http://eudml.org/doc/275313>.

@article{Dunn2014,
abstract = {The fundamental combinatorial structure of a net in $\scriptstyle \mathbb\{C\}P^2$ is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in $\scriptstyle \mathbb\{C\}P^2$. Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in $\scriptstyle \mathbb\{C\}P^2$ are empty to show some non-existence results for 4-nets in $\scriptstyle \mathbb\{C\}P^2$.},
author = {Dunn, Corey, Miller, Matthew, Wakefield, Max, Zwicknagl, Sebastian},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {nets; Latin squares},
language = {eng},
month = {3},
number = {2},
pages = {335-351},
publisher = {Université Paul Sabatier, Toulouse},
title = {Equivalence classes of Latin squares and nets in $\{\mathbb\{C\}P\}^2$},
url = {http://eudml.org/doc/275313},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Dunn, Corey
AU - Miller, Matthew
AU - Wakefield, Max
AU - Zwicknagl, Sebastian
TI - Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 335
EP - 351
AB - The fundamental combinatorial structure of a net in $\scriptstyle \mathbb{C}P^2$ is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in $\scriptstyle \mathbb{C}P^2$. Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in $\scriptstyle \mathbb{C}P^2$ are empty to show some non-existence results for 4-nets in $\scriptstyle \mathbb{C}P^2$.
LA - eng
KW - nets; Latin squares
UR - http://eudml.org/doc/275313
ER -

References

top
  1. Julian (R.), Abel (R.), Colbourn (C. J.), Wojtas (M.).— Concerning seven and eight mutually orthogonal Latin squares, J. Combin. Des. 12, no. 2, p. 123-131 (2004). Zbl1033.05018MR2036650
  2. Bartolo (E. A.), Cogolludo-Agustin (J.I.), Libgober (A.).— Depth of characters of curve complements and orbifold pencils (2011). 
  3. Bartolo (E. A.), Cogolludo-Agustin (J.I.), Libgober (A.).— Depth of cohomology support loci for quasi-projective varieties via orbifold pencils (2012). 
  4. Björner (A.), Las Vergnas (M.), Sturmfels (B.), White (N.), Ziegler (G. N.).— Oriented matroids, second ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge (1999). Zbl0944.52006MR1744046
  5. Brualdi (R. A.).— Introductory combinatorics, fifth ed., Pearson Prentice Hall, Upper Saddle River, NJ (2010). Zbl0915.05001MR2655770
  6. Chowla (S.), Erdös (P.), Straus (E. G.).— On the maximal number of pairwise orthogonal Latin squares of a given order, Canad. J. Math. 12, p. 204-208 (1960). Zbl0093.32001MR122730
  7. Colbourn (C. J.), Dinitz (J. D.) (eds.).— The CRC handbook of combinatorial designs, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, (1996). Zbl0836.00010
  8. Dénes (J.), Keedwell (A. D.).— Latin squares and their applications, Academic Press, New York (1974). Zbl0754.05018MR351850
  9. Denham (G.), Suciu (A. I.).— Multinets, parallel connections, and milnor fibrations of arrangements, (2012). 
  10. Falk (M.), Yuzvinsky (S.).— Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143, no. 4, p. 1069-1088 (2007). Zbl1122.52009MR2339840
  11. Kawahara (Y.).— The non-vanishing cohomology of Orlik-Solomon algebras, Tokyo J. Math. 30, no. 1, 223-238 (2007). Zbl1132.52027MR2328065
  12. Libgober (A.), Yuzvinsky (S.).— Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121, no. 3, p. 337-361 (2000). Zbl0952.52020MR1761630
  13. Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. Zbl0757.55001MR1217488
  14. Pereira (J. V.), Yuzvinsky (S.).— Completely reducible hypersurfaces in a pencil, Adv. Math. 219, no. 2, p. 672-688 (2008). Zbl1146.14005MR2435653
  15. Reidemeister (K.).— Topologische Fragen der Differentialgeometrie. V. Gewebe und Gruppen, Math. Z. 29, no. 1, p. 427-435 (1929). Zbl54.0746.02MR1545014
  16. Stipins (J.).— III, On finite k-nets in the complex projective plane, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) University of Michigan (2007). MR2710620
  17. Tang (Y. L.), Liang Li (Q.).— A new upper bound for the largest number of mutually orthogonal Latin squares, Math. Theory Appl. (Changsha) 25, no. 3, p. 60-63 (2005). MR2204935
  18. Tarry (G.).— Le problème de 36 officeurs, Compte Rendu de l’Association Française pour l’Avancement de Science Naturel, no. 2, p. 170-203 (1901). 
  19. Urzua (G. A.).— On line arrangements with applications to 3-nets, 04 (2007). Zbl1191.14066
  20. Urzua (G. A.).— Arrangements of curves and algebraic surfaces, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) University of Michigan (2008). Zbl1192.14033MR2712257
  21. Yuzvinsky (S.).— Realization of finite abelian groups by nets in 2 , Compos. Math. 140, no. 6, p. 1614-1624 (2004). Zbl1066.52027MR2098405
  22. Yuzvinsky (S.).— A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137, no. 5, p. 1641-1648 (2009). Zbl1173.14021MR2470822

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.