Equivalence classes of Latin squares and nets in
Corey Dunn; Matthew Miller; Max Wakefield; Sebastian Zwicknagl
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 2, page 335-351
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDunn, Corey, et al. "Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 335-351. <http://eudml.org/doc/275313>.
@article{Dunn2014,
abstract = {The fundamental combinatorial structure of a net in $\scriptstyle \mathbb\{C\}P^2$ is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in $\scriptstyle \mathbb\{C\}P^2$. Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in $\scriptstyle \mathbb\{C\}P^2$ are empty to show some non-existence results for 4-nets in $\scriptstyle \mathbb\{C\}P^2$.},
author = {Dunn, Corey, Miller, Matthew, Wakefield, Max, Zwicknagl, Sebastian},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {nets; Latin squares},
language = {eng},
month = {3},
number = {2},
pages = {335-351},
publisher = {Université Paul Sabatier, Toulouse},
title = {Equivalence classes of Latin squares and nets in $\{\mathbb\{C\}P\}^2$},
url = {http://eudml.org/doc/275313},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Dunn, Corey
AU - Miller, Matthew
AU - Wakefield, Max
AU - Zwicknagl, Sebastian
TI - Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 335
EP - 351
AB - The fundamental combinatorial structure of a net in $\scriptstyle \mathbb{C}P^2$ is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in $\scriptstyle \mathbb{C}P^2$. Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in $\scriptstyle \mathbb{C}P^2$ are empty to show some non-existence results for 4-nets in $\scriptstyle \mathbb{C}P^2$.
LA - eng
KW - nets; Latin squares
UR - http://eudml.org/doc/275313
ER -
References
top- Julian (R.), Abel (R.), Colbourn (C. J.), Wojtas (M.).— Concerning seven and eight mutually orthogonal Latin squares, J. Combin. Des. 12, no. 2, p. 123-131 (2004). Zbl1033.05018MR2036650
- Bartolo (E. A.), Cogolludo-Agustin (J.I.), Libgober (A.).— Depth of characters of curve complements and orbifold pencils (2011).
- Bartolo (E. A.), Cogolludo-Agustin (J.I.), Libgober (A.).— Depth of cohomology support loci for quasi-projective varieties via orbifold pencils (2012).
- Björner (A.), Las Vergnas (M.), Sturmfels (B.), White (N.), Ziegler (G. N.).— Oriented matroids, second ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge (1999). Zbl0944.52006MR1744046
- Brualdi (R. A.).— Introductory combinatorics, fifth ed., Pearson Prentice Hall, Upper Saddle River, NJ (2010). Zbl0915.05001MR2655770
- Chowla (S.), Erdös (P.), Straus (E. G.).— On the maximal number of pairwise orthogonal Latin squares of a given order, Canad. J. Math. 12, p. 204-208 (1960). Zbl0093.32001MR122730
- Colbourn (C. J.), Dinitz (J. D.) (eds.).— The CRC handbook of combinatorial designs, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, (1996). Zbl0836.00010
- Dénes (J.), Keedwell (A. D.).— Latin squares and their applications, Academic Press, New York (1974). Zbl0754.05018MR351850
- Denham (G.), Suciu (A. I.).— Multinets, parallel connections, and milnor fibrations of arrangements, (2012).
- Falk (M.), Yuzvinsky (S.).— Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143, no. 4, p. 1069-1088 (2007). Zbl1122.52009MR2339840
- Kawahara (Y.).— The non-vanishing cohomology of Orlik-Solomon algebras, Tokyo J. Math. 30, no. 1, 223-238 (2007). Zbl1132.52027MR2328065
- Libgober (A.), Yuzvinsky (S.).— Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121, no. 3, p. 337-361 (2000). Zbl0952.52020MR1761630
- Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. Zbl0757.55001MR1217488
- Pereira (J. V.), Yuzvinsky (S.).— Completely reducible hypersurfaces in a pencil, Adv. Math. 219, no. 2, p. 672-688 (2008). Zbl1146.14005MR2435653
- Reidemeister (K.).— Topologische Fragen der Differentialgeometrie. V. Gewebe und Gruppen, Math. Z. 29, no. 1, p. 427-435 (1929). Zbl54.0746.02MR1545014
- Stipins (J.).— III, On finite k-nets in the complex projective plane, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) University of Michigan (2007). MR2710620
- Tang (Y. L.), Liang Li (Q.).— A new upper bound for the largest number of mutually orthogonal Latin squares, Math. Theory Appl. (Changsha) 25, no. 3, p. 60-63 (2005). MR2204935
- Tarry (G.).— Le problème de 36 officeurs, Compte Rendu de l’Association Française pour l’Avancement de Science Naturel, no. 2, p. 170-203 (1901).
- Urzua (G. A.).— On line arrangements with applications to 3-nets, 04 (2007). Zbl1191.14066
- Urzua (G. A.).— Arrangements of curves and algebraic surfaces, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) University of Michigan (2008). Zbl1192.14033MR2712257
- Yuzvinsky (S.).— Realization of finite abelian groups by nets in , Compos. Math. 140, no. 6, p. 1614-1624 (2004). Zbl1066.52027MR2098405
- Yuzvinsky (S.).— A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137, no. 5, p. 1641-1648 (2009). Zbl1173.14021MR2470822
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.