Page 1

Displaying 1 – 10 of 10

Showing per page

A Relation between the Weyl Group W(e8) and Eight-Line Arrangements on a Real Projective Plane

Fukui, Tetsuo, Sekiguchi, Jiro (2007)

Serdica Journal of Computing

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.The Weyl group W(E8) acts on the con guration space of systems of labelled eight lines on a real projective plane. With a system of eight lines with a certain condition, a diagram consisting of ten roots of the root system of type E8 is associated. We have already shown the existence of a W(E8)-equivariant map of the totality of such diagrams to the set of systems of...

Equivalence classes of Latin squares and nets in P 2

Corey Dunn, Matthew Miller, Max Wakefield, Sebastian Zwicknagl (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The fundamental combinatorial structure of a net in P 2 is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in P 2 . Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in P 2 are empty to show some non-existence results for 4-nets in P 2 .

Une axiomatisation au premier ordre des arrangements de pseudodroites euclidiennes

Bruno Courcelle, Frédéric Olive (1999)

Annales de l'institut Fourier

Nous définissons une structure logique permettant de représenter les classes d’homéomorphismes des arrangements de pseudodroites du plan euclidien. Nous donnons une axiomatisation finie du premier ordre de la réalisabilité des arrangements de pseudodroites.

Currently displaying 1 – 10 of 10

Page 1