[unknown]
- [1] Université Paris-Sud Laboratoire de Mathémathiques d’Orsay 91450 Orsay (France)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-34
- ISSN: 0373-0956
Access Full Article
topHow to cite
topPecastaing, Vincent. "null." Annales de l’institut Fourier 0.0 (0): 1-34. <http://eudml.org/doc/275316>.
@article{Pecastaing0,
affiliation = {Université Paris-Sud Laboratoire de Mathémathiques d’Orsay 91450 Orsay (France)},
author = {Pecastaing, Vincent},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-34},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275316},
volume = {0},
year = {0},
}
TY - JOUR
AU - Pecastaing, Vincent
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 34
LA - eng
UR - http://eudml.org/doc/275316
ER -
References
top- Yves Benoist, Orbites des structures rigides (d’après M. Gromov), Integrable systems and foliations/Feuilletages et systèmes intégrables (Montpellier, 1995) 145 (1997), 1-17, Birkhäuser Boston, Boston, MA Zbl0880.58031
- Andreas Čap, Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), 453-505 Zbl0996.53023
- Andreas Čap, Jan Slovák, Parabolic geometries. I, 154 (2009), American Mathematical Society, Providence, RI Zbl1183.53002
- G. D’Ambra, M. Gromov, Lectures on transformation groups: geometry and dynamics, Surveys in differential geometry (Cambridge, MA, 1990) (1991), 19-111, Lehigh Univ., Bethlehem, PA
- Renato Feres, Rigid geometric structures and actions of semisimple Lie groups, Rigidité, groupe fondamental et dynamique 13 (2002), 121-167, Soc. Math. France, Paris Zbl1058.53037
- E. García-Río, P. Gilkey, S. Nikcevic, Homothety curvature homogeneity, (2013) Zbl06477613
- Michael Gromov, Rigid transformations groups, Géométrie différentielle (Paris, 1986) 33 (1988), 65-139, Hermann, Paris Zbl0652.53023
- James E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York-Heidelberg Zbl0325.20039
- Karin Melnick, A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. (2) 57 (2011), 57-89 Zbl1242.53029
- Katsumi Nomizu, On local and global existence of Killing vector fields, Ann. of Math. (2) 72 (1960), 105-120 Zbl0093.35103
- Barbara Opozda, Affine versions of Singer’s theorem on locally homogeneous spaces, Ann. Global Anal. Geom. 15 (1997), 187-199 Zbl0881.53010
- Barbara Opozda, On locally homogeneous -structures, Geom. Dedicata 73 (1998), 215-223 Zbl0943.53019
- Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502
- F Podestà, A Spiro, Introduzione ai Gruppi di Transformazione, Volume of the Preprint Series of the Mathematics Department “V. Voleterra” of the University of Ancona, Via delle Brecce Bianche, Ancona, ITALY (1996)
- R.W. Sharpe, Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Foreword by S. S. Chern., (1997), Berlin: Springer Zbl0876.53001
- I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697 Zbl0171.42503
- Noboru Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), 131-190 Zbl0346.32010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.