[unknown]

Vincent Pecastaing[1]

  • [1] Université Paris-Sud Laboratoire de Mathémathiques d’Orsay 91450 Orsay (France)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-34
  • ISSN: 0373-0956

How to cite

top

Pecastaing, Vincent. "null." Annales de l’institut Fourier 0.0 (0): 1-34. <http://eudml.org/doc/275316>.

@article{Pecastaing0,
affiliation = {Université Paris-Sud Laboratoire de Mathémathiques d’Orsay 91450 Orsay (France)},
author = {Pecastaing, Vincent},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-34},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275316},
volume = {0},
year = {0},
}

TY - JOUR
AU - Pecastaing, Vincent
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 34
LA - eng
UR - http://eudml.org/doc/275316
ER -

References

top
  1. Yves Benoist, Orbites des structures rigides (d’après M. Gromov), Integrable systems and foliations/Feuilletages et systèmes intégrables (Montpellier, 1995) 145 (1997), 1-17, Birkhäuser Boston, Boston, MA Zbl0880.58031
  2. Andreas Čap, Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), 453-505 Zbl0996.53023
  3. Andreas Čap, Jan Slovák, Parabolic geometries. I, 154 (2009), American Mathematical Society, Providence, RI Zbl1183.53002
  4. G. D’Ambra, M. Gromov, Lectures on transformation groups: geometry and dynamics, Surveys in differential geometry (Cambridge, MA, 1990) (1991), 19-111, Lehigh Univ., Bethlehem, PA 
  5. Renato Feres, Rigid geometric structures and actions of semisimple Lie groups, Rigidité, groupe fondamental et dynamique 13 (2002), 121-167, Soc. Math. France, Paris Zbl1058.53037
  6. E. García-Río, P. Gilkey, S. Nikcevic, Homothety curvature homogeneity, (2013) Zbl06477613
  7. Michael Gromov, Rigid transformations groups, Géométrie différentielle (Paris, 1986) 33 (1988), 65-139, Hermann, Paris Zbl0652.53023
  8. James E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York-Heidelberg Zbl0325.20039
  9. Karin Melnick, A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. (2) 57 (2011), 57-89 Zbl1242.53029
  10. Katsumi Nomizu, On local and global existence of Killing vector fields, Ann. of Math. (2) 72 (1960), 105-120 Zbl0093.35103
  11. Barbara Opozda, Affine versions of Singer’s theorem on locally homogeneous spaces, Ann. Global Anal. Geom. 15 (1997), 187-199 Zbl0881.53010
  12. Barbara Opozda, On locally homogeneous G -structures, Geom. Dedicata 73 (1998), 215-223 Zbl0943.53019
  13. Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502
  14. F Podestà, A Spiro, Introduzione ai Gruppi di Transformazione, Volume of the Preprint Series of the Mathematics Department “V. Voleterra” of the University of Ancona, Via delle Brecce Bianche, Ancona, ITALY (1996) 
  15. R.W. Sharpe, Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Foreword by S. S. Chern., (1997), Berlin: Springer Zbl0876.53001
  16. I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697 Zbl0171.42503
  17. Noboru Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), 131-190 Zbl0346.32010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.