Numerical characterization of nef arithmetic divisors on arithmetic surfaces
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 3, page 717-753
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMoriwaki, Atsushi. "Numerical characterization of nef arithmetic divisors on arithmetic surfaces." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 717-753. <http://eudml.org/doc/275323>.
@article{Moriwaki2014,
abstract = {In this paper, we give a numerical characterization of nef arithmetic $\mathbb\{R\}$-Cartier divisors of $C^0$-type on an arithmetic surface. Namely an arithmetic $\mathbb\{R\}$-Cartier divisor $\overline\{D\}$ of $C^0$-type is nef if and only if $\overline\{D\}$ is pseudo-effective and $\widehat\{\mathrm\{deg\}\}(\overline\{D\}^2) = \widehat\{\mathrm\{vol\}\}(\overline\{D\})$.},
author = {Moriwaki, Atsushi},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Arakelov theory; arithmetic surfaces},
language = {eng},
number = {3},
pages = {717-753},
publisher = {Université Paul Sabatier, Toulouse},
title = {Numerical characterization of nef arithmetic divisors on arithmetic surfaces},
url = {http://eudml.org/doc/275323},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Moriwaki, Atsushi
TI - Numerical characterization of nef arithmetic divisors on arithmetic surfaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 717
EP - 753
AB - In this paper, we give a numerical characterization of nef arithmetic $\mathbb{R}$-Cartier divisors of $C^0$-type on an arithmetic surface. Namely an arithmetic $\mathbb{R}$-Cartier divisor $\overline{D}$ of $C^0$-type is nef if and only if $\overline{D}$ is pseudo-effective and $\widehat{\mathrm{deg}}(\overline{D}^2) = \widehat{\mathrm{vol}}(\overline{D})$.
LA - eng
KW - Arakelov theory; arithmetic surfaces
UR - http://eudml.org/doc/275323
ER -
References
top- Abbes (A.) and Bouche (T.).— Théorème de Hilbert-Samuel “arithmétique”, Ann. Inst. Fourier(Grenoble) 45, 375-401 (1995). Zbl0818.14011MR1343555
- Autissier (P.).— Points entiers sur les surfaces arithmétiques, Journal für die reine und angewandte Mathematik 531, 201-235 (2001). Zbl1007.11041MR1810122
- Berman (R.) and Demailly (J.-P.).— Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry and Topology: On the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics 296, 39-66. Zbl1258.32010MR2884031
- Boucksom (S.) and Chen (H.).— Okounkov bodies of filtered linear series, Compositio Math. 147, 1205-1229 (2011). Zbl1231.14020MR2822867
- Demailly (J.-P.).— Complex Analytic and Differential Geometry.
- Faltings (G.).— Calculus on arithmetic surfaces, Ann. of Math. 119, 387-424 (1984). Zbl0559.14005MR740897
- Gillet (H.) and Soulé (C.).— An arithmetic Riemann-Roch theorem, Invent. Math. 110, 473-543 (1992). Zbl0777.14008MR1189489
- Hriljac (P.).— Height and Arakerov’s intersection theory, Amer. J. Math., 107, 23-38 (1985). Zbl0593.14004MR778087
- Ikoma (H.).— Boundedness of the successive minima on arithmetic varieties, to appear in J. Algebraic Geometry. Zbl1273.14048MR3019450
- Khovanskii (A.).— Newton polyhedron, Hilbert polynomial and sums of finite sets, Funct. Anal. Appl. 26, 276-281 (1993). Zbl0809.13012MR1209944
- Lipman (J.).— Desingularization of two-dimensional schemes, Ann. of Math., 107, 151-207 (1978). Zbl0349.14004MR491722
- Moriwaki (A.).— Continuity of volumes on arithmetic varieties, J. of Algebraic Geom. 18, 407-457 (2009). Zbl1167.14014MR2496453
- Moriwaki (A.).— Zariski decompositions on arithmetic surfaces, Publ. Res. Inst. Math. Sci. 48, p. 799-898 (2012). Zbl1281.14017MR2999543
- Moriwaki (A.).— Big arithmetic divisors on , Kyoto J. Math. 51, p. 503-534 (2011). Zbl1228.14023MR2823999
- Moriwaki (A.).— Toward Dirichlet’s unit theorem on arithmetic varieties, to appear in Kyoto J. of Math. (Memorial issue of Professor Maruyama), see also (arXiv:1010.1599v4 [math.AG]). Zbl1270.14008MR3049312
- Moriwaki (A.).— Arithmetic linear series with base conditions, Math. Z., (DOI) 10.1007/s00209-012-0991-2. Zbl1260.14029MR2995173
- Randriambololona (H.).— Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faiseaux cohérents, J. Reine Angew. Math. 590, p. 67-88 (2006). Zbl1097.14020MR2208129
- Zhang (S.).— Small points and adelic metrics, Journal of Algebraic Geometry 4, p. 281-300 (1995). Zbl0861.14019MR1311351
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.